Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(4): 2434-2442, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553861

RESUMO

Petroleum-based plastics commonly and widely used on a daily basis are a threat to ecological health as they do not degrade in an ecologically feasible time frame. A class of natural polymers known as polyhydroxyalkanoates (PHAs) represents an up-and-coming alternative to petroleum-based materials, as they share properties similar to those of commodity plastics, such as polyethylene, polystyrene, among others, with the advantage of being biodegradable. PHAs are naturally produced by microorganisms under stress, and various farming practices have been proposed to be used for the synergistic and sustainable production of PHA for commercial purposes. Aquaculture has demonstrated particular potential for the production of PHA; however, a large struggle in commercializing these polymers is in procuring necessary feedstocks for manufacture outside of the laboratory environment. Through the coupling of PHA production and biofloc technology in aquaculture, the impediments to commercial exploitation can be potentially surmounted, while also providing for higher production efficiency in aquafarms. This mini-review covers the basic aspects of biofloc technology applied to aquaculture for the commercial production of PHA in large scale and offers a brief perspective on the next steps associated with the research and implementation of PHA production with biofloc technology.

2.
ACS Appl Mater Interfaces ; 12(33): 37607-37618, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814393

RESUMO

The deposition of pesticides and their retention on plant surfaces are critical challenges for modern precision agriculture, which directly affect phytosanitary treatment, bioavailability, efficacy, and the loss of pesticides. Herein, a novel and eco-friendly waterborne polyurethane delivery system was developed to enhance the spray deposition and pesticide retention on plant surfaces. More specifically, biobased cationic and anionic waterborne polyurethane dispersions were synthesized from castor oil. Both cationic and anionic polyurethane dispersions exhibited remarkable microstructural, amphiphilic, and nanoparticle morphologies with a core-shell structure that served to encapsulate a biopesticide (azadirachtin) in their hydrophobic cores (WPU-ACT). The results indicated that the cationic WPU-ACT carriers exhibited a better sustained release behavior and a better protective effect from light and heat for azadirachtin. In addition, the simultaneous spray of anionic and cationic WPU-ACT significantly enhanced the spray deposition and prolonged the retention of pesticides due to the reduced surface tension and surface precipitation induced by the electrostatic interaction when two droplets with opposite charges come into contact with each other. A field efficacy assessment also indicated that the simultaneous spray of anionic and cationic WPU-ACT could control the infestation of brown planthopper in rice crops. Castor oil-based waterborne polyurethanes in this study work as an efficient pesticide delivery system by exhibiting enhanced deposition, rainfastness, retention ability, protection, and sustained release behavior, holding great promise for spraying pesticide formulations in modern and environmentally friendly agricultural applications.


Assuntos
Óleo de Rícino/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Limoninas/química , Praguicidas/química , Poliuretanos/química , Agricultura , Composição de Medicamentos , Liberação Controlada de Fármacos , Química Verde , Interações Hidrofóbicas e Hidrofílicas , Limoninas/farmacologia , Praguicidas/farmacologia , Eletricidade Estática , Propriedades de Superfície , Água
3.
Sensors (Basel) ; 20(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456333

RESUMO

Polymeric chemosensors are vital sensing tools because of higher sensitivity compared to their monomeric counterparts and tunable mechanical properties. This study focuses on the incorporation of a hydroxyaromatic 1,2,3-triazole sensor, 2-(4-phenyl 1H-1,2,3-triazol-1-yl)phenol (PTP), into polymers. By itself, the triazole has a selective, fluorometric response to the fluoride, acetate, and dihydrogen phosphate anions, and is most responsive to fluoride. Current investigations probe the suitability of various polymeric backbones for the retention and enhancement of the triazole's sensing capabilities. Backbones derived from acrylic acid, methyl methacrylate, divinylbenzene, and styrene were explored. UV-illumination, Nuclear Magnetic Resonance (NMR) titration, and ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy studies are used to investigate the performance of newly synthesized polymers and the derivatives of PTP that serve as the polymers' precursors. Among the polymers investigated, copolymers with styrene proved best; these systems retained the sensing capabilities and were amenable to tuning for sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...