Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(25): 16285-16296, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865278

RESUMO

Sulfide- and halide-based ceramic ionic conductors exhibit comparable ionic conductivity with liquid electrolytes and are candidates for high-energy- and high-power-density all-solid-state batteries. These materials, however, are inherently brittle, making them unfavorable for applications. Here, we report a mechanically enhanced composite Na+ conductor that contains 92.5 wt % of sodium thioantimonate (Na3SbS4, NSS) and 7.5 wt % of sodium carboxymethyl cellulose (CMC); the latter serves as the binder and an electrochemically inert encapsulation layer. The ceramic and binder constituents were integrated at the particle level, providing ceramic NSS-level Na+ conductivity in the NSS-CMC composite. The more than 5-fold decrease of electrolyte thickness obtained in NSS-CMC composite provided a 5-fold increase in Na+ conductance compared to NSS ceramic pellets. As a result of the CMC encapsulation, this NSS-CMC composite shows increased moisture resistivity and electrochemical stability, which significantly promotes the cycling performance of NSS-based solid-state batteries. This work demonstrates a well-controlled, orthogonal process of ceramic-rich, composite electrolyte processing: independent streams for ceramic particle formation along with binder encapsulation in a solvent-assisted environment. This work also provides insights into the interplay among the solvent, the polymeric binder, and the ceramic particles in composite electrolyte synthesis and implies the critical importance of identifying the appropriate solvent/binder system for precise control of this complicated process.

2.
ACS Appl Mater Interfaces ; 15(18): 22532-22542, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37097086

RESUMO

Hyperspectral infrared (IR) images contain a large amount of highly spatially resolved information about the chemical composition of a sample. However, the analysis of hyperspectral IR imaging data for complex heterogeneous systems can be challenging because of the spectroscopic and spatial complexity of the data. We implement a deep generative modeling approach using a ß-variational autoencoder to learn disentangled representations of the generative factors of variance in a data set of cross-linked polyethylene (PEX-a) pipe. We identify three distinct physicochemical factors of aging and degradation learned by the model and apply the trained model to high-resolution hyperspectral IR images of cross-sectional slices of unused virgin, used in-service, and cracked PEX-a pipe. By mapping the learned representations of aging and degradation to the IR images, we extract detailed information on the physicochemical changes that occur during aging, degradation, and cracking in PEX-a pipe. This study shows how representation learning by deep generative modeling can significantly enhance the analysis of high-resolution IR images of complex heterogeneous samples.

3.
J Phys Chem Lett ; 13(25): 5787-5793, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35726872

RESUMO

Infrared (IR) spectra contain detailed and extensive information about the chemical composition and bonding environment in a sample. However, this information is difficult to extract from complex heterogeneous systems because of overlapping absorptions due to different generative factors. We implement a deep learning approach to study the complex spectroscopic changes that occur in cross-linked polyethylene (PEX-a) pipe by training a ß-variational autoencoder (ß-VAE) on a database of PEX-a pipe spectra. We show that the ß-VAE outperforms principal component analysis (PCA) and learns interpretable and independent representations of the generative factors of variance in the spectra. We apply the ß-VAE encoder to a hyperspectrum of a crack in the wall of a pipe to evaluate the spatial distribution of these learned representations. This study shows how deep learning architectures like ß-VAE can enhance the analysis of spectroscopic data of complex heterogeneous systems.


Assuntos
Aprendizado Profundo , Bases de Dados Factuais , Análise de Componente Principal
4.
Anal Chem ; 88(19): 9351-9354, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27610457

RESUMO

Characterization of surface adsorbed species using infrared (IR) spectroscopy provides valuable information concerning interfacial chemical and physical processes. However, in situ infrared studies of surface areas approaching the IR diffraction limit, such as micrometer scale electrodes, require a hitherto unrealized means to obtain high signal-to-noise (S/N) spectra from femtomole quantities of adsorbed molecules. A major methodological breakthrough is described that couples the high brilliance of synchrotron-sourced infrared microscopy with attenuated total reflection surface enhanced infrared spectroscopy (ATR-SEIRAS). The method is shown to allow the spectral measurement of a monolayer of 4-methoxypyridine (MOP) adsorbed on a surface enhancing gold film electrode under fully operational electrochemistry conditions. A factor of 15 noise improvement is achieved with small apertures using synchrotron IR relative to a thermal IR source. The very low noise levels allow the measurement of high quality IR spectra of 2.5 fmol of molecules confined to a 125 µm2 beam spot.

5.
Langmuir ; 32(9): 2184-91, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26862774

RESUMO

This work uses electrochemical surface sensitive vibrational spectroscopy to characterize the adsorption of a known metal nanoparticle stabilizer and growth director, 4-methoxypyridine (MOP). Surface enhanced infrared absorption spectroscopy (SEIRAS) is employed to study the adsorption of 4-methoxypyridine on gold films. Experiments are performed under electrochemical control and in different electrolyte acidities to identify both the extent of protonation of the adsorbed species as well as its orientation with respect to the electrode surface. No evidence of adsorbed conjugated acid is found even when the electrolyte pH is considerably lower than the pKa. Through an analysis of the transition dipole moments, determined from DFT calculations, the SEIRA spectra support an adsorption configuration through the ring nitrogen which is particularly dominant in neutral pH conditions. Adsorption is dependent on both the electrical state of the Au film electrode as well as the presence of ions in the electrolyte that compete for adsorption sites at positive potentials. Combined differential capacitance measurements and spectroscopic data demonstrate that both a horizontal adsorption geometry and a vertical adsorption phase can be induced, with the former being found on negatively charged surfaces in acidic media and the latter over a wide range of polarizations in neutral solutions.

6.
Langmuir ; 32(9): 2225-35, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26867110

RESUMO

Surface-enhanced infrared adsorption spectroscopy (SEIRAS) and neutron reflectometry (NR) were employed to characterize ubiquinone (UQ) containing hybrid bilayer membranes. The biomimetic membrane was prepared by fusing phospholipid vesicles on a hydrophobic octadecanethiol monolayer self-assembled on a thin gold film. Using SEIRAS, the assembly of the membrane is monitored in situ. The presence of ubiquinone is verified by the characteristic carbonyl peaks from the quinone ester. A well-ordered distal lipid leaflet results from fusion of vesicles with and without the addition of ubiquinone. With applied potential, the hybrid bilayer membrane in the absence of UQ behaves in the same way as previously reported solid supported phospholipid membranes. When ubiquinone is incorporated in the membrane, electric field induced changes in the distal leaflet are suppressed. Changes in the infrared vibrations of the ubiquinone due to applied potential indicate the head groups are located in both polar and nonpolar environments. The spectroscopic data reveal that the isoprenoid unit of the ubiquinone is likely lying in the midplane of the lipid bilayer while the head has some freedom to move within the hydrophobic core. The SEIRAS experiments show redox behavior of UQ incorporated in a model lipid membrane that are otherwise inaccessible with traditional electrochemistry techniques.

7.
Langmuir ; 29(48): 14997-5005, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24195649

RESUMO

High-resolution atomic force microscopy (AFM) was used to image the real-time in situ degradation of crystalline by three types of T. reesei cellulolytic enzymes-TrCel6A, TrCel7A, and TrCel7B-and their mixtures. TrCel6A and TrCel7A are exo-acting cellobiohydrolases processing cellulose fibers from the nonreducing and reducing ends, respectively. TrCel7B is an endoglucanase that hydrolyzes amorphous cellulose within fibers. When acting alone on native cellulose fibers, each of the three enzymes is incapable of significant degradation. However, mixtures of two enzymes exhibited synergistic effects. The degradation effects of this synergism depended on the order in which the enzymes were added. Faster hydrolysis rates were observed when TrCel7A (exo) was added to fibers pretreated first with TrCel7B (endo) than when adding the enzymes in the opposite order. Endo-acting TrCel7B removed amorphous cellulose, softened and swelled the fibers, and exposed single microfibrils, facilitating the attack by the exo-acting enzymes. AFM images revealed that exo-acting enzymes processed the TrCel7B-pretreated fibers preferentially from one specific end (reducing or nonreducing). The most efficient (almost 100%) hydrolysis was observed with the mixture of the three enzymes. In this mixture, TrCel7B softened the fiber and TrCel6A and TrCel7A were directly observed to process it from the two opposing ends. This study provides high-resolution direct visualization of the nature of the synergistic relation between T. reesei exo- and endo-acting enzymes digesting native crystalline cellulose.


Assuntos
Celulases/metabolismo , Celulose/metabolismo , Trichoderma/enzimologia , Celulases/química , Celulases/isolamento & purificação , Celulose/química , Cristalização , Microscopia de Força Atômica , Modelos Moleculares
8.
Biochim Biophys Acta ; 1828(3): 967-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23219803

RESUMO

Dehydrins (group 2 late embryogenesis abundant proteins) are intrinsically-disordered proteins that are expressed in plants experiencing extreme environmental conditions such as drought or low temperature. Their roles include stabilizing cellular proteins and membranes, and sequestering metal ions. Here, we investigate the membrane interactions of the acidic dehydrin TsDHN-1 and the basic dehydrin TsDHN-2 derived from the crucifer Thellungiella salsuginea that thrives in the Canadian sub-Arctic. We show using compression studies with a Langmuir-Blodgett trough that both dehydrins can stabilize lipid monolayers with a lipid composition mimicking the composition of the plant outer mitochondrial membrane, which had previously been shown to induce ordered secondary structures (disorder-to-order transitions) in the proteins. Ellipsometry of the monolayers during compression showed an increase in monolayer thickness upon introducing TsDHN-1 (acidic) at 4°C and TsDHN-2 (basic) at room temperature. Atomic force microscopy of supported lipid bilayers showed temperature-dependent phase transitions and domain formation induced by the proteins. These results support the conjecture that acidic dehydrins interact with and potentially stabilize plant outer mitochondrial membranes in conditions of cold stress. Single-molecule force spectroscopy of both proteins pulled from supported lipid bilayers indicated the induced formation of tertiary conformations in both proteins, and potentially a dimeric association for TsDHN-2.


Assuntos
Brassicaceae/metabolismo , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Biofísica/métodos , Membrana Celular/metabolismo , Temperatura Baixa , Dimerização , Lipídeos/química , Microscopia de Força Atômica/métodos , Modelos Estatísticos , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Propriedades de Superfície , Temperatura
9.
Langmuir ; 28(25): 9664-72, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22646051

RESUMO

The biodegradation of cellulose involves the enzymatic action of cellulases (endoglucanases), cellobiohydrolases (exoglucanases), and ß-glucosidases that act synergistically. The rate and efficiency of enzymatic hydrolysis of crystalline cellulose in vitro decline markedly with time, limiting the large-scale, cost-effective production of cellulosic biofuels. Several factors have been suggested to contribute to this phenomenon, but there is considerable disagreement regarding the relative importance of each. These earlier investigations were hampered by the inability to observe the disruption of crystalline cellulose and its subsequent hydrolysis directly. Here, we show the application of high-resolution atomic force microscopy to observe the swelling of a single crystalline cellulose fiber and its-hydrolysis in real time directly as catalyzed by a single cellulase, the industrially important cellulase 7B from Trichoderma reesei. Volume changes, the root-mean-square roughness, and rates of hydrolysis of the surfaces of single fibers were determined directly from the images acquired over time. Hydrolysis dominated the early stage of the experiment, and swelling dominated the later stage. The high-resolution images revealed that the combined action of initial hydrolysis followed by swelling exposed individual microfibrils and bundles of microfibrils, resulting in the loosening of the fiber structure and the exposure of microfibrils at the fiber surface. Both the hydrolysis and swelling were catalyzed by the native cellulase; under the same conditions, its isolated carbohydrate-binding module did not cause changes to crystalline cellulose. We anticipate that the application of our AFM-based analysis on other cellulolytic enzymes, alone and in combination, will provide significant insight into the process of cellulose biodegradation and greatly facilitate its application for the efficient and economical production of cellulosic ethanol.


Assuntos
Biocatálise , Celulase/metabolismo , Celulose/química , Celulose/metabolismo , Microscopia de Força Atômica , Trichoderma/enzimologia , Sequência de Aminoácidos , Soluções Tampão , Celulase/química , Hidrólise , Dados de Sequência Molecular , Fatores de Tempo
10.
Langmuir ; 26(7): 5007-13, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20170174

RESUMO

Atomic force microscopy (AFM) was used to study native cellulose films prepared from a bacterial cellulose source, Acetobacter xylinum, using a novel application of the Langmuir-Blodgett technique. These films allowed high-resolution AFM images of single fibers and their microfibril structure to be obtained. Two types of experiments were performed. First, the fibers were characterized using samples that were dried after LB deposition. Next, novel protocols that allowed us to image single fibers of cellulose in films that were never dried were developed. This procedure allowed us to perform in situ AFM imaging studies of the enzymatic hydrolysis of single cellulose fibers in solution using cellulolytic enzymes. The in situ degradation of cellulose fibers was monitored over a 9 h period using AFM. These studies provided the first direct, real-time images of the enzymatic degradation of a single cellulose fiber. We have demonstrated the tremendous potential of AFM to study the mechanism of the enzymatic digestion of cellulose and to identify the most effective enzymes for the digestion of various cellulose structures or isomorphs.


Assuntos
Celulose/química , Celulose/metabolismo , Microscopia de Força Atômica/métodos , Gluconacetobacter xylinus/química , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...