Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(8): 9526-9535, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434895

RESUMO

This study addresses the fabrication of extruded films using poly(lactic acid) (PLA) and chitosan, with and without maleic anhydride as a compatibilizing agent, for potential applications in disposable food packaging. These films underwent controlled conditions of UV irradiation, water condensation, and temperature variations in an accelerated weathering chamber. The investigation analyzed the effect of different exposure periods on the structural, morphological, mechanical, and thermal properties of the films. It was observed that PLA films exhibited a lower susceptibility to degradation compared to those containing chitosan. Specifically, the pure PLA film showed an increase in elastic modulus and strength during the initial 144 h of exposure, associated with cross-linking induced by UV radiation. On the other hand, film Q2 composed of PLA, chitosan, and maleic anhydride and Q1 without maleic anhydride experienced a tensile strength loss of over 50% after 244 h of exposure. The Q2 film exhibited greater homogeneity, leading to increased resistance to degradation compared to that of Q1. As the degradation time increased, both the Q1 and Q2 films demonstrated a decline in thermal stability. These films also exhibited alterations in crystallinity attributed to the chemo-crystallization process, along with fluctuations in the glass transition temperature and crystallization, particularly at 288 h.

2.
ACS Omega ; 9(5): 5361-5370, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343984

RESUMO

Diabetic foot ulcers are a common complication of diabetes mellitus and can lead to severe infections and delayed wound healing. The development of effective wound dressings is crucial to promoting faster healing and preventing infections. This investigation aims to fabricate and characterize electrospun meshes composed of poly(ε-caprolactone) and collagen, extracted from tilapia skin. Additionally, tetracycline and chloramphenicol were incorporated into the dressings to explore their potential to combat wound infections. A comprehensive characterization was carried out, covering the physical structure, chemical composition, and potential application-related properties of the materials by the combination of scanning electron microscopy, Fourier transform infrared (FTIR), mechanical analysis, cell viability, live/dead staining, and microbiological analysis. Changes in mechanical properties were observed, related to the morphology of the membranes; the presence of the active molecules is evidenced by FTIR analysis; cell viability above control was observed for all the prepared membranes, and they were active in antimicrobial tests, suggesting that the developed materials have the potential to be further explored as wound dressings or scaffolds for diabetic foot ulcers.

3.
ACS Omega ; 9(4): 4439-4446, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313549

RESUMO

This research outlines the fabrication of polymeric membranes and films of poly(lactic acid) (PLA), prepared via electrospinning and extrusion, respectively. These materials were subsequently coated with polyaniline (PANi) by using the in situ chemical polymerization technique. Scanning electron microscopy micrographs revealed that the best coatings were achieved when 3 and 30 min of contact time with the monomeric solution were used for the membrane and film, respectively. Additionally, Fourier transform infrared spectra, thermogravimetric studies, and contact angle measurements demonstrated proper interaction between PLA and PANi. The findings of these studies suggest that PLA membranes and films can serve as suitable substrates for the deposition of PANi, and the composite materials hold potential for use in environmental remediation applications.

4.
ACS Omega ; 8(45): 43243-43253, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024776

RESUMO

Conductive polymers, such as polypyrrole and polyaniline, have been extensively studied for their notable intrinsic electronic and ionic conductivities, rendering them suitable for a range of diverse applications. In this study, in situ chemical polymerization was employed to coat extruded PLA films with PPy and PANi. Morphological analysis reveals a uniform and compact deposition of both polyaniline and polypyrrole after polymerization periods of 3 and 1 h, respectively. Furthermore, the PLA-PANi-3h and PLA-PPy-1h composites exhibited the highest electrical conductivity, with values of 0.042 and 0.022 S cm-1, respectively. These findings were in agreement with the XPS results, as the polyaniline-coated film showed a higher proportion of charge carriers compared to the polypyrrole composite. The elastic modulus of the coated films showed an increase compared with that of pure PLA films. Additionally, the inflection temperatures for the PLA-PANi-3h and PLA-PPy-1h composites were 368.7 and 367.2 °C, respectively, while for pure PLA, it reached 341.47 °C. This improvement in mechanical and thermal properties revealed the effective interfacial adhesion between the PLA matrix and the conducting polymer. Therefore, this work demonstrates that coating biopolymeric matrices with PANi or PPy enables the production of functional and environmentally friendly conductive materials suitable for potential use in the removal of heavy metals in water treatment.

5.
Front Chem ; 10: 841964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300385

RESUMO

The relative populations of Cu38 isomers depend to a great extent on the temperature. Density functional theory and nanothermodynamics can be combined to compute the geometrical optimization of isomers and their spectroscopic properties in an approximate manner. In this article, we investigate entropy-driven isomer distributions of Cu38 clusters and the effect of temperature on their IR spectra. An extensive, systematic global search is performed on the potential and free energy surfaces of Cu38 using a two-stage strategy to identify the lowest-energy structure and its low-energy neighbors. The effects of temperature on the populations and IR spectra are considered via Boltzmann factors. The computed IR spectrum of each isomer is multiplied by its corresponding Boltzmann weight at finite temperature. Then, they are summed together to produce a final temperature-dependent, Boltzmann-weighted spectrum. Our results show that the disordered structure dominates at high temperatures and the overall Boltzmann-weighted spectrum is composed of a mixture of spectra from several individual isomers.

6.
Molecules ; 26(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34577181

RESUMO

In this study, we report the lowest energy structure of bare Cu13 nanoclusters as a pair of enantiomers at room temperature. Moreover, we compute the enantiomerization energy for the interconversion from minus to plus structures in the chiral putative global minimum for temperatures ranging from 20 to 1300 K. Additionally, employing nanothermodynamics, we compute the probabilities of occurrence for each particular isomer as a function of temperature. To achieve that, we explore the free energy surface of the Cu13 cluster, employing a genetic algorithm coupled with density functional theory. Moreover, we discuss the energetic ordering of isomers computed with various density functionals. Based on the computed thermal population, our results show that the chiral putative global minimum strongly dominates at room temperature.

7.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203563

RESUMO

Lowest-energy structures, the distribution of isomers, and their molecular properties depend significantly on geometry and temperature. Total energy computations using DFT methodology are typically carried out at a temperature of zero K; thereby, entropic contributions to the total energy are neglected, even though functional materials work at finite temperatures. In the present study, the probability of the occurrence of one particular Be4B8 isomer at temperature T is estimated by employing Gibbs free energy computed within the framework of quantum statistical mechanics and nanothermodynamics. To identify a list of all possible low-energy chiral and achiral structures, an exhaustive and efficient exploration of the potential/free energy surfaces is carried out using a multi-level multistep global genetic algorithm search coupled with DFT. In addition, we discuss the energetic ordering of structures computed at the DFT level against single-point energy calculations at the CCSD(T) level of theory. The total VCD/IR spectra as a function of temperature are computed using each isomer's probability of occurrence in a Boltzmann-weighted superposition of each isomer's spectrum. Additionally, we present chemical bonding analysis using the adaptive natural density partitioning method in the chiral putative global minimum. The transition state structures and the enantiomer-enantiomer and enantiomer-achiral activation energies as a function of temperature evidence that a change from an endergonic to an exergonic type of reaction occurs at a temperature of 739 K.

8.
Materials (Basel) ; 14(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383889

RESUMO

The starting point to understanding cluster properties is the putative global minimum and all the nearby local energy minima; however, locating them is computationally expensive and difficult. The relative populations and spectroscopic properties that are a function of temperature can be approximately computed by employing statistical thermodynamics. Here, we investigate entropy-driven isomers distribution on Be6B11- clusters and the effect of temperature on their infrared spectroscopy and relative populations. We identify the vibration modes possessed by the cluster that significantly contribute to the zero-point energy. A couple of steps are considered for computing the temperature-dependent relative population: First, using a genetic algorithm coupled to density functional theory, we performed an extensive and systematic exploration of the potential/free energy surface of Be6B11- clusters to locate the putative global minimum and elucidate the low-energy structures. Second, the relative populations' temperature effects are determined by considering the thermodynamic properties and Boltzmann factors. The temperature-dependent relative populations show that the entropies and temperature are essential for determining the global minimum. We compute the temperature-dependent total infrared spectra employing the Boltzmann factor weighted sums of each isomer's infrared spectrum and find that at finite temperature, the total infrared spectrum is composed of an admixture of infrared spectra that corresponds to the spectra of the lowest-energy structure and its isomers located at higher energies. The methodology and results describe the thermal effects in the relative population and the infrared spectra.

9.
Materials (Basel) ; 8(1): 137-148, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28787928

RESUMO

The use of mixtures of synthetic and natural polymers is a potential option to reduce the pollution by plastic waste. In this work, the method for the chemical modification of chitosan with poly(lactic acid) was developed; then, the preparation of films of blends of polyethylene and chitosan-poly(lactic acid) produced by an extrusion method using polyethylene-graft maleic anhydride as a compatibilizer. It was possible to obtain films with a maximum content of 20 wt% and 30 wt%, chitosan, with and without compatibilizer, respectively. Scanning electron microscope (SEM) analysis showed a homogeneous surface on all films. The addition of the compatibilizer had a significant effect on the mechanical properties of the films, such as an increase in Young's modulus and a decrease in the elongation at break; additionally, the compatibilizer promotes thermal degradation in a single step and gives the film a slight increase in thermal resistance. These results are attributed to an improved interaction in the interface of polyethylene and chitosan-poly(lactic acid), promoted by the compatibilizer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...