Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geobiology ; 11(3): 201-14, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23421593

RESUMO

Zinc isotope abundances are fairly constant in igneous rocks and shales and are left unfractionated by hydrothermal processes at pH < 5.5. For that reason, Zn isotopes in sediments can be used to trace the changing chemistry of the hydrosphere. Here, we report Zn isotope compositions in Fe oxides from banded iron formations (BIFs) and iron formations of different ages. Zinc from early Archean samples is isotopically indistinguishable from the igneous average (δ(66) Zn ~0.3‰). At 2.9-2.7 Ga, δ(66) Zn becomes isotopically light (δ(66) Zn < 0‰) and then bounces back to values >1‰ during the ~2.35 Ga Great Oxygenation Event. By 1.8 Ga, BIF δ(66) Zn has settled to the modern value of FeMn nodules and encrustations (~0.9‰). The Zn cycle is largely controlled by two different mechanisms: Zn makes strong complexes with phosphates, and phosphates in turn are strongly adsorbed by Fe hydroxides. We therefore review the evidence that the surface geochemical cycles of Zn and P are closely related. The Zn isotope record echoes Sr isotope evidence, suggesting that erosion starts with the very large continental masses appearing at ~2.7 Ga. The lack of Zn fractionation in pre-2.9 Ga BIFs is argued to reflect the paucity of permanent subaerial continental exposure and consequently the insignificant phosphate input to the oceans and the small output of biochemical sediments. We link the early decline of δ(66) Zn between 3.0 and 2.7 Ga with the low solubility of phosphate in alkaline groundwater. The development of photosynthetic activity at the surface of the newly exposed continents increased the oxygen level in the atmosphere, which in turn triggered acid drainage and stepped up P dissolution and liberation of heavy Zn into the runoff. Zinc isotopes provide a new perspective on the rise of continents, the volume of carbonates on continents, changing weathering conditions, and compositions of the ocean through time.


Assuntos
Evolução Planetária , Sedimentos Geológicos/análise , Isótopos de Zinco/análise , Ácidos Carboxílicos/análise , Cromatografia por Troca Iônica , Compostos Férricos/química , Espectrometria de Massas , Oceanos e Mares , Fosfatos/análise , Água do Mar/química
2.
Phys Rev Lett ; 93(17): 172501, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15525068

RESUMO

The decay of 182Hf, now extinct, into stable 182W has developed into an important chronometer for studying early solar system processes such as the accretion and differentiation of planetesimals and the formation of the Earth and the Moon. The only 182Hf half-life measurements available were performed 40 years ago and resulted in an imprecise half-life of (9+/-2)x10(6) yr. We redetermined the half-life by measuring the specific activity of 182Hf based on two independent methods, resulting in a value of t(1/2)(182Hf)=(8.90+/-0.09)x10(6) yr, in good agreement with the previous value, but with a 20 times smaller uncertainty. The greatly improved precision of this half-life now permits very precise intercalibration of the 182Hf-182W isotopic system with other chronometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...