Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Curr Microbiol ; 81(6): 164, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710854

RESUMO

Edible bird's nest (EBN), a most highly priced and valuable foodstuff, contains high percentage of proteins and carbohydrates. However, proteins adhering to these carbohydrates make the EBN hard and tough, which need to be boiled as the bird's nest soup to make the Chinese cuisine. To overcome the hard and tough texture of EBN and improve the digestion degrees, the present study screened and identified a probiotic strain Bacillus amyloliquefaciens YZW02 from 5-year stored EBN sample completely solubilizing EBN for the first time. The 24-h B. amyloliquefaciens fermented EBN contained 20.30-21.48 mg/mL of the soluble protein contents with a recovery rate of 98-100%, DPPH radical scavenging rate of 84.76% and ABTS radical scavenging capacity of 41.05%. The mixed fermentation of B. amyloliquefaciens YZW02 and Bacillus natto BN1 were further applied to improve the low-MW peptide percentages and antioxidant activities. The mixed-fermentation of B. natto BN1 with 4-h cultured B. amyloliquefaciens YZW02 had the lowest percentage (82.23%) of >12-kDa proteins/peptides and highest percentages of 3-12 kDa, 1-3 kDa and 0.1-1 kDa peptides of 8.6% ± 0.08, 7.57% ± 0.09, 1.77% ± 0.05 and 0.73% ± 0.05, with the highest DPPH, ABTS and •OH scavenging capacity of 90.23%, 46.45% and 49.12%, respectively. These findings would provide an efficient strategy for improving the solubility and antioxidant activities of EBNs.


Assuntos
Antioxidantes , Bacillus amyloliquefaciens , Aves , Fermentação , Probióticos , Solubilidade , Bacillus amyloliquefaciens/química , Bacillus amyloliquefaciens/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Animais , Probióticos/química , Probióticos/metabolismo , Aves/microbiologia
2.
Dalton Trans ; 53(17): 7406-7413, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38587851

RESUMO

Separation of lanthanide (Ln) and minor actinide (MA) elements and mutual separation between minor actinide elements (e.g. Am(III) and Cm(III)) represent a crucial undertaking. However, separating these elements poses a significant challenge owing to their highly similar physicochemical properties. Asymmetric N-heterocyclic ligands such as N-ethyl-6-(1H-pyrazol-3-yl)-N-(p-tolyl)picolinamide (Et-p-Tol-A-PzPy) and N-ethyl-N-(p-tolyl)-1,10-phenanthroline-2-carboxamide (ETPhenAm) have recently received considerable attention in the separation of MAs over Ln from acid solutions. By changing the central skeleton structures of these ligands and introducing substituents with different properties on the side chains, their complexation behavior with Am(III), Cm(III), and Eu(III) may be affected. In this work, we explore four different asymmetric N-containing heterocyclic ligands, namely Et-p-Tol-A-PzPy (L1), N-ethyl-6'-(1H-pyrazol-3-yl)-N-(p-tolyl)-[2,2'-bipyridine]-6-carboxamide (L2), N-ethyl-9-(1H-pyrazol-3-yl)-N-(p-tolyl)-1,10-phenanthroline-2-carboxamide (L3), and ETPhenAm (L4) using density functional theory (DFT). The calculated results demonstrate the potential of ligands L1-L4 for the extraction and separation of Am(III), Cm(III), and Eu(III). Ligand analysis shows that ligand L3 binds more easily to the central metal atom, in line with the stronger extraction capacity of L3. In spite of the higher covalence between the side chain and the central metal atom for complexes with L1-L3, the main chain seems to control the stability of the extraction complexes. The preorganized 1,10-phenanthroline backbone also further enhances the extraction performance of L3 and L4. The difference in coordination ability between the side chain donors of these ligands and metal ions may affect their separation efficiency. This work presents theoretical insights into synthesizing novel ligands for separating trivalent actinides by adjusting N-heterocyclic ligands.

3.
Bioresour Bioprocess ; 11(1): 2, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38647587

RESUMO

Perylenequinones (PQs) from bambusicolous Shiraia fungi serve as excellent photosensitizers for photodynamic therapy. However, the lower yield of PQ production in mycelium cultures is an important bottleneck for their clinical application. Light has long been recognized as a pivotal regulatory signal for fungal secondary metabolite biosynthesis. In this study, we explored the role of nitric oxide (NO) in the growth and PQ biosynthesis in mycelium cultures of Shiraia sp. S9 exposed to red light. The continuous irradiation with red light (627 nm, 200 lx) suppressed fungal conidiation, promoted hyphal branching, and elicited a notable increase in PQ accumulation. Red light exposure induced NO generation, peaking to 81.7 µmol/g FW on day 8 of the culture, with the involvement of nitric oxide synthase (NOS)- or nitrate reductase (NR)-dependent pathways. The application of a NO donor sodium nitroprusside (SNP) restored conidiation of Shiraia sp. S9 under red light and stimulated PQ production, which was mitigated upon the introduction of NO scavenger carboxy-PTIO or soluble guanylate cyclase inhibitor NS-2028. These results showed that red light-induced NO, as a signaling molecule, was involved in the regulation of growth and PQ production in Shiraia sp. S9 through the NO-cGMP-PKG signaling pathway. While mycelial H2O2 content exhibited no significant alternations, a transient increase of intracellular Ca2+ and extracellular ATP (eATP) content was detected upon exposure to red light. The generation of NO was found to be interdependent on cytosolic Ca2+ and eATP concentration. These signal molecules cooperated synergistically to enhance membrane permeability and elevate the transcript levels of PQ biosynthetic genes in Shiraia sp. S9. Notably, the combined treatment of red light with 5 µM SNP yielded a synergistic effect, resulting in a substantially higher level of hypocrellin A (HA, 254 mg/L), about 3.0-fold over the dark control. Our findings provide valuable insights into the regulation of NO on fungal secondary metabolite biosynthesis and present a promising strategy involving the combined elicitation with SNP for enhanced production of photoactive PQs and other valuable secondary metabolites in fungi.

4.
Adv Sci (Weinh) ; 11(19): e2306850, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477543

RESUMO

Micro-Doppler effect is a vital feature of a target that reflects its oscillatory motions apart from bulk motion and provides an important evidence for target recognition with radars. However, establishing the micro-Doppler database poses a great challenge, since plenty of experiments are required to get the micro-Doppler signatures of different targets for the purpose of analyses and interpretations with radars, which are dramatically limited by high cost and time-consuming. Aiming to overcome these limits, a low-cost and powerful simulation platform of the micro-Doppler effects is proposed based on time-domain digital coding metasurface (TDCM). Owing to the outstanding capabilities of TDCM in generating and manipulating nonlinear harmonics during wave-matter interactions, it enables to supply rich and high-precision electromagnetic signals with multiple micro-Doppler frequencies to describe the micro-motions of different objects, which are especially favored for the training of artificial intelligence algorithms in automatic target recognition and benefit a host of applications like imaging and biosensing.

5.
J Am Chem Soc ; 146(10): 7088-7096, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436238

RESUMO

Dilanthanide complexes with one-electron delocalization are important targets for understanding the specific 4f/5d-bonding feature in lanthanide chemistry. Here, we report an isolable azide-bridged dicerium complex 3 [{(TrapenTMS)Ce}2(µ-N3)]• [Trapen = tris (2-aminobenzyl)amine; TMS = SiMe3], which is synthesized by the reaction of tripodal ligand-supported (TrapenTMS)CeIVCl complex 2 with NaN3. The structure and bonding nature of 3 are fully characterized by X-ray crystal diffraction analysis, electron paramagnetic resonance (EPR), magnetic measurement, cyclic voltammetry, X-ray absorption spectroscopy, and quantum-theoretical studies. Complex 3 presents a trans-bent central Ce-N3-Ce unit with a single electron of two mixed-valent Ce atoms. The unique low-temperature (2 K) anisotropic EPR signals [g = 1.135, 2.003, and 3.034] of 3 indicate that its spin density is distributed on the central Ce-N3-Ce unit with marked electron delocalization. Quantum chemical analyses show strong 4f/5d orbital mixing in the singly occupied molecular orbital of 3, which allows for the unpaired electron to extend throughout the cerium-azide-cerium unit via a multicentered one-electron (Ce-N3-Ce) interaction. This work extends the family of mixed-valent dilanthanide complexes and provides a paradigm for understanding the bonding motif of ligand-bridged dilanthanide complexes.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38346295

RESUMO

Sarcopenia was recently reported to be relevant to an increased macro-and microvascular disease risk. Sarcopenia index (SI) has been identified as a surrogate marker for sarcopenia. The aim of the present study was to investigate the association between macro- and microvascular disease and SI in patients with type 2 diabetes mellitus (T2DM). A total of 783 patients with T2DM were enrolled in this cross-sectional study. The SI was calculated by (serum creatinine [mg/dL]/cystatin C [mg/L]) × 100. The subjects were divided into three groups according to SI tertiles: T1 (41.27-81.37), T2 (81.38- 99.55), and T3 (99.56-192.31). Parameters of macro- and microvascular complications, including diabetic retinopathy (DR), micro- and macroalbuminuria (MAU), diabetic peripheral neuropathy (DPN), and lower extremity peripheral artery disease (LEAD) were evaluated. Multivariate logistic regression analysis revealed that when taking the top tertile of SI as a reference, an increasing trend of the prevalence of DR, MAU, DPN, and LEAD were presented (all P for trend  < 0.05), where the OR (95% CI) for DR prevalence was 1.967 (1.252-3.090) in T2, 2.195 (1.278-3.769) in T1, for MAU was 1.805 (1.149-2.837) in T2, 2.537 (1.490-4.320) in T1, for DPN was 2.244 (1.485-3.391) in T2, 3.172 (1.884-5.341) in T1, and for LEAD was 2.017 (1.002-4.057) in T2, 2.405 (1.107-5.225) in T1 (all P < 0.05). Patients with lower SI were more inclined to have an increased risk of macro- and microvascular damage in T2DM population, which may be related to sarcopenia.

7.
Inorg Chem ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055977

RESUMO

Excellent "CHON" compatible ligands based on a heterocyclic skeleton for the separation of trivalent actinides [An(III)] from lanthanides [Ln(III)] have been widely explored, the aim being spent nuclear fuel reprocessing. The combination mode of a soft/hard (N/O) donor upon the coordination chemistry of An(III) and Ln(III) should play a vital role with respect to the performance of ligands. As such, in this work, two typical experimentally available phenanthroline-derived tetradentate ligands, CyMe4-BTPhen (L1) and Et-Tol-DAPhen (L4), and two theoretically designed asymmetric tetradentate heterocyclic ligands, L2 and L3, with various N/O donors were investigated using scalar relativistic density functional theory. We have evaluated the electronic structures of L1-L4 and their coordination modes, bonding properties, and extraction reactions with Am(III) and Eu(III). We found that the Am/Eu-N interactions play a more important role in the orbital interactions between the ligand and Am(III)/Eu(III) ions. Compared with those of L1, the coordinated O atoms of L2 and L4 weaken the metal-N bonds. The Am(III)/Eu(III) selectivity follows the order L1 > L2 > L4 based on the change in Gibbs free energy, reflecting the fact that the Am(III)/Eu(III) selectivity of the ligand is affected by the number of coordinated N atoms. In addition, L3 displays the strongest binding ability for Am(III)/Eu(III) ions and the smallest Am(III)/Eu(III) selectivity among the four ligands, due to its structural preorganization. This work clarifies the influence of the number of coordinated N and O atoms of ligands on Am(III)/Eu(III) selectivity, which provides valuable fundamental information for the design of efficient ligands with N and O donors for An(III)/Ln(III) separation.

8.
World J Microbiol Biotechnol ; 39(12): 341, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828354

RESUMO

Hypocrellin A (HA), a fungal perylenequinone from bambusicolous Shiraia species, is a newly developed photosensitizer for photodynamic therapy in cancer and other infectious diseases. The lower yield of HA is an important bottleneck for its biomedical application. This study is the first report of the enhancement of HA production in mycelium culture of Shiraia sp. S9 by the polysaccharides from its host bamboo which serve as a strong elicitor. A purified bamboo polysaccharide (BPSE) with an average molecular weight of 34.2 kDa was found to be the most effective elicitor to enhance fungal HA production and characterized as a polysaccharide fraction mainly composed of arabinose and galactose (53.7: 36.9). When BPSE was added to the culture at 10 mg/L on day 3, the highest HA production of 422.8 mg/L was achieved on day 8, which was about 4.0-fold of the control. BPSE changed the gene expressions mainly responsible for central carbon metabolism and the cellular oxidative stress. The induced generation of H2O2 and nitric oxide was found to be involved in both the permeabilization of cell membrane and HA biosynthesis, leading to enhancements in both intra- and extracellular HA production. Our results indicated the roles of plant polysaccharides in host-fungal interactions and provided a new elicitation technique to improve fungal perylenequinone production in mycelium cultures.


Assuntos
Peróxido de Hidrogênio , Perileno , Fenol , Quinonas/metabolismo , Polissacarídeos , Fungos/metabolismo
9.
J Phys Chem A ; 127(36): 7479-7486, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37668451

RESUMO

The separation of plutonium (Pu) from spent nuclear fuel was achieved by effectively adjusting the oxidation state of Pu from +IV to +III in the plutonium uranium reduction extraction (PUREX) process. Acetaldoxime (CH3CHNOH) as a free salt reductant can rapidly reduce Pu(IV), but the reduction mechanism remains indistinct. Herein, we explore the reduction mechanism of two Pu(IV) ions by one CH3CHNOH molecule, where the second Pu(IV) reduction is the rate-determining step with the energy barrier of 19.24 kcal mol-1, which is in line with the experimental activation energy (20.95 ± 2.34 kcal mol-1). Additionally, the results of structure and spin density analyses demonstrate that the first and second Pu(IV) reduction is attributed to hydrogen atom transfer and hydroxyl ligand transfer, respectively. Analysis of localized molecular orbitals unveils that the reduction process is accompanied by the breaking of the Pu-OOH bond and the formation of the OOH-H and C-OOH bonds. The reaction energies confirm that the reduction of Pu(IV) by acetaldoxime is both thermodynamically and kinetically accessible. In this work, we elucidate the reduction mechanism of Pu(IV) with CH3CHNOH, which provides a theoretical understanding of the rapid reduction of Pu(IV).

10.
Nat Commun ; 14(1): 5377, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666804

RESUMO

Manipulations of multiple carrier frequencies are especially important in a variety of fields like radar detection and wireless communications. In conventional radio-frequency architecture, the multi-frequency control is implemented by microwave circuits, which are hard to integrate with antenna apertures, thus bringing the problems of expensive system and high power consumption. Previous studies demonstrate the possibility to jointly control the multiple harmonics using space-time-coding digital metasurface, but suffer from the drawback of inherent harmonic entanglement. To overcome the difficulties, we propose a multi-partition asynchronous space-time-coding digital metasurface (ASTCM) to generate and manipulate multiple frequencies with more flexibility. We further establish an ASTCM-based transmitter to realize wireless communications with frequency-division multiplexing, where the metasurface is responsible for carrier-wave generations and signal modulations. The direct multi-frequency controls with ASTCM provides a new avenue to simplify the traditional wireless systems with reduced costs and low power consumption.

11.
Adv Sci (Weinh) ; 10(29): e2304278, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37552812

RESUMO

A space-time coding metasurface (STCM) operating in the sub-terahertz band to construct new-architecture wireless communication systems is proposed. Specifically, a programmable STCM is designed with varactor-diode-tuned metasurface elements, enabling precise regulation of harmonic amplitudes and phases by adjusting the time delay and duty cycle of square-wave modulation signal loaded on the varactor diodes. Independent electromagnetic (EM) regulations in the space and time domains are achieved by STCM to realize flexible beam manipulations and information modulations. Based on these features, a sub-terahertz wireless communication link is constructed by employing STCM as a transmitter. Experimental results demonstrate that the STCM supports multiple modulation schemes including frequency-shift keying, phase-shift keying, and quadrature amplitude modulations in a wide frequency band. It is also shown that the STCM is capable of realizing wide-angle beam scanning in the range of ±45o , which offers an opportunity for user tracking during the communication. Thus, the STCM transmitter with high device density and low power consumption can provide low-complexity, low-cost, low-power, and low-heat solutions for building the next-generation wireless communication systems in the sub-terahertz frequency and even terahertz band.

12.
J Am Chem Soc ; 145(32): 18148-18159, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37531566

RESUMO

Efficient transfer of charge carriers through a fast transport pathway is crucial to excellent photocatalytic reduction performance in solar-driven CO2 reduction, but it is still challenging to effectively modulate the electronic transport pathway between photoactive motifs by feasible chemical means. In this work, we propose a thermally induced strategy to precisely modulate the fast electron transport pathway formed between the photoactive motifs of a porphyrin metal-organic framework using thorium ion with large ionic radius and high coordination number as the coordination-labile metal node. As a result, the stacking pattern of porphyrin molecules in the framework before and after the crystal transformations has changed dramatically, which leads to significant differences in the separation efficiency of photogenerated carriers in MOFs. The rate of photocatalytic reduction of CO2 to CO by IHEP-22(Co) reaches 350.9 µmol·h-1·g-1, which is 3.60 times that of IHEP-21(Co) and 1.46 times that of IHEP-23(Co). Photoelectrochemical characterizations and theoretical calculations suggest that the electron transport channels formed between porphyrin molecules inhibit the recombination of photogenerated carriers, resulting in high performance for photocatalytic CO2 reduction. The interaction mechanism of CO2 with IHEP-22(Co) was clarified by using in-situ electron paramagnetic resonance, in-situ diffuse reflectance infrared Fourier transform spectroscopy, in-situ extended X-ray absorption fine structure spectroscopy, and theoretical calculations. These results provide a new method to regulate the efficient separation and migration of charge carriers in CO2 reduction photocatalysts and will be helpful to guide the design and synthesis of photocatalysts with superior performance for the production of solar fuels.

13.
Synth Syst Biotechnol ; 8(3): 427-436, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37409170

RESUMO

Hypocrellins are major bioactive perylenequinones from Shiraia fruiting bodies and have been developed as efficient photosensitizers for photodynamic therapy. Pseudomonas is the second dominant genus inside Shiraia fruiting bodies, but with less known actions on the host fungus. In this work, the effects of bacterial volatiles from the Shiraia-associated Pseudomonas on fungal hypocrellin production were investigated. Pseudomonas putida No.24 was the most active to promote significantly accumulation of Shiraia perylenequinones including hypocrellin A (HA), HC, elsinochrome A (EA) and EC. Headspace analysis of the emitted volatiles revealed dimethyl disulfide as one of active compounds to promote fungal hypocrellin production. The bacterial volatiles induced an apoptosis in Shiraia hyphal cell, which was associated with the generation of reactive oxygen species (ROS). ROS generation was proved to mediate the volatile-induced membrane permeability and up-regulation of gene expressions for hypocrellin biosynthesis. In the submerged volatile co-culture, the bacterial volatiles stimulated not only HA content in mycelia, but also HA secretion into the medium, leading to the enhanced HA production to 249.85 mg/L, about 2.07-fold over the control. This is the first report on the regulation of Pseudomonas volatiles on fungal perylenequinone production. These findings could be helpful to understand the roles of bacterial volatiles in fruiting bodies and also provide new elicitation method using bacterial volatiles to stimulate fungal secondary metabolite production.

14.
Inorg Chem ; 62(21): 8179-8187, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37192470

RESUMO

Separation of minor actinides from lanthanides is one of the biggest challenges in spent fuel reprocessing due to the similar physicochemical properties of trivalent lanthanides (Ln(III)) and actinides (An(III)). Therefore, developing ligands with excellent extraction and separation performance is essential at present. As an excellent pre-organization platform, calixarene has received more attention on Ln(III)/An(III) separation. In this work, we systematically explored the complexation behaviors of the diglycolamide (DGA)/dimethylacetamide (DMA)-functionalized calix[4]arene extractants for Eu(III) and Am(III) using relativistic density functional theory (DFT). These calix[4]arene-derived ligands were obtained by functionalization with two or four binding units at the narrow edge of the calix[4]arene platform. All bonding nature analyses suggested that the Eu-L complexes possess stronger interaction compared to Am-L analogues, resulting in the higher extraction capacity of the these calix[4]arene ligands toward Eu(III). Thermodynamic analysis demonstrates that these pre-organized ligands on the calix[4]arene platform with four binding units yield better extraction abilities than the single ligands. Although DMA-functionalized ligands show stronger complexation stability for metal ions, in acidic solutions, the calix[4]arene ligands with DGA binding units have better extraction performance for Eu(III) and Am(III) due to the basicity of the DMA ligand. This work enabled us to gain a deeper understanding of the bonding properties between supramolecular ligands and lanthanides/actinides and afford useful insights into designing efficient supramolecular ligands for separating Ln(III)/An(III).

15.
J Phys Chem A ; 127(19): 4259-4268, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37143344

RESUMO

An efficient approach to Np separation in the Plutonium Uranium Reduction EXtraction (PUREX) process is to adjust Np(VI) to Np(V) by free-salt reductants, such as hydrazine and its derivatives. Recently, carbohydrazide (CO(N2H3)2), a derivative of hydrazine and urea, has received much attention, which can reduce Np(VI) to Np(V) in the extraction reprocessing of spent nuclear fuel. Herein, according to the experimental observations, we examine the reduction mechanism of four Np(VI) by one carbohydrazide molecule using multiple theoretical calculations. The fourth Np(VI) reduction with a 22.26 kcal mol-1 energy barrier is the rate-determining step, which is in accordance with the experimental observations (20.54 ± 1.20 kcal mol-1). The results of spin density reflect that the reduction of the first and third Np(VI) ion is an outer-sphere electron transfer, while that of the second and fourth Np(VI) ion is the hydrogen transfer. Localized molecular orbitals (LMOs) uncover that the breaking of the N-H bond and formation of the Oyl-H bond are accompanied by the reaction from initial complexes (ICs) to intermediates (INTs). This work offers basic perspectives for the reduction mechanism of Np(VI) to Np(V) by CO(N2H3)2, which is also expected to design excellent free-salt Np(VI) reductants for the separation of Np in the advanced PUREX process.

16.
Inorg Chem ; 62(11): 4581-4589, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36935646

RESUMO

The separation of lanthanides and actinides has attracted great attention in spent nuclear fuel reprocessing up to date. In addition, liquid-liquid extraction is a feasible and useful way to separate An(III) from Ln(III) based on their relative solubilities in two different immiscible liquids. The hydrophilic bipyridine- and phenanthroline-based nitrogen-chelating ligands show excellent performance in separation of Am(III) and Eu(III) as reported previously. To profoundly explore the separation mechanism, herein, we first of all designed four hydrophilic sulfonated and phosphorylated ligands L1, L2, L3, and L4 based on the bipyridine and phenanthroline backbones. In addition, we studied the structures of these ligands and their neutral complexes [ML(NO3)3] (M = Am, Eu) as well as the thermodynamic properties of complexing reactions through the scalar relativistic density functional theory. According to the changes of the Gibbs free energy for the back-extraction reactions, the phenanthroline-based ligands L2 and L4 have stronger complexing capacity for both Am(III) and Eu(III) ions while the phosphorylated ligand L3 with the bipyridine framework has the highest Am(III)/Eu(III) selectivity. In addition, the charge decomposition analysis revealed a higher degree of charge transfer from the ligand to Am(III), suggesting stronger donor-acceptor interactions in the Am(III) complexes. This study can provide theoretical insights into the separation of actinide(III)/lanthanide(III) using hydrophilic sulfonated and phosphorylated N-donor ligands.

17.
Microb Cell Fact ; 22(1): 57, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964527

RESUMO

BACKGROUND: Perylenequinones from Shiraia fruiting bodies are excellent photosensitizers and widely used for anti-cancer photodynamic therapy (PDT). The lower yield of Shiraia perylenequinones becomes a significant bottleneck for their medical application. Branched-chain amino acids (BCAAs) not only serve as important precursors for protein synthesis, but also are involved in signaling pathway in cell growth and development. However, there are few reports concerning their regulation of fungal secondary metabolism. In present study, the eliciting effects of BCAAs including L-isoleucine (L-Ile), L-leucine (L-Leu) and L-valine (L-Val) on Shiraia perylenequinone production were investigated. RESULTS: Based on the analysis of the transcriptome and amino acid contents of Shiraia in the production medium, we revealed the involvement of BCAAs in perylenequinone biosynthesis. The fungal conidiation was promoted by L-Val treatment at 1.5 g/L, but inhibited by L-Leu. The spore germination was promoted by both. The production of fungal perylenequinones including hypocrellins A (HA), HC and elsinochromes A-C (EA-EC) was stimulated significantly by L-Val at 1.5 g/L, but sharply suppressed by L-Leu. After L-Val treatment (1.5 g/L) in Shiraia mycelium cultures, HA, one of the main bioactive perylenequinones reached highest production 237.92 mg/L, about 2.12-fold than that of the control. Simultaneously, we found that the expression levels of key genes involved in the central carbon metabolism and in the late steps for perylenequinone biosynthesis were up-regulated significantly by L-Val, but most of them were down-regulated by L-Leu. CONCLUSIONS: Our transcriptome analysis demonstrated that BCAA metabolism was involved in Shiraia perylenequinone biosynthesis. Exogenous BCAAs exhibit contrasting effects on Shiraia growth and perylenequinones production. L-Val could promote perylenequinone biosynthesis via not only enhancing the central carbon metabolism for more precursors, but also eliciting perylenequinone biosynthetic gene expressions. This is the first report on the regulation of BCAAs on fungal perylenequinone production. These findings provided a basis for understanding physiological roles of BCAAs and a new avenue for increasing perylenequinone production in Shiraia mycelium cultures.


Assuntos
Aminoácidos de Cadeia Ramificada , Ascomicetos , Aminoácidos de Cadeia Ramificada/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Valina/metabolismo , Ascomicetos/metabolismo , Micélio
18.
Diab Vasc Dis Res ; 20(2): 14791641231169246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990072

RESUMO

BACKGROUND: Our previous studies have shown that the basic helix-loop-helix family member e40 (Bhlhe40) plays a critical role in regulating calcification and senescence of vascular smooth muscle cells induced by high glucose. In this study, we determined the association between serum Bhlhe40 levels and subclinical atherosclerosis in patients with type 2 diabetes mellitus (T2DM). METHODS: 247 patients with T2DM were included in this cross-sectional study between June 2021 and July 2022. The presence of subclinical atherosclerosis was evaluated by carotid ultrasonography. Serum Bhlhe40 concentrations were measured with an ELISA kit. RESULTS: Serum Bhlhe40 levels were remarkably higher in the subclinical atherosclerosis group than in the subjects without subclinical atherosclerosis (p < 0.001). Correlation analysis showed a positive correlation between serum Bhlhe40 and carotid intima-media thickness (C-IMT) (r = 0.155, p = 0.015). The optimal threshold of serum Bhlhe40 > 5.67 ng/mL had an area under the ROC curve (AUC) was 0.709 (p < 0.001). In addition, serum Bhlhe40 levels were associated with the prevalence of subclinical atherosclerosis (OR: 1.790, 95% CI: 1.414-2.266, p < 0.001). CONCLUSION: Serum Bhlhe40 levels were significantly higher in T2DM subjects with subclinical atherosclerosis and positively associated with C-IMT.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Estudos Transversais , Espessura Intima-Media Carotídea , Fatores de Risco , Aterosclerose/diagnóstico por imagem , Aterosclerose/epidemiologia , Proteínas de Homeodomínio , Fatores de Transcrição Hélice-Alça-Hélice Básicos
19.
Aging Dis ; 14(1): 170-183, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36818559

RESUMO

Vascular calcification and aging often increase morbidity and mortality in patients with diabetes mellitus (DM); however, the underlying mechanisms are still unknown. In the present study, we found that Bcl-2 modifying factor (BMF) and BMF antisense RNA 1 (BMF-AS1) were significantly increased in high glucose-induced calcified and senescent vascular smooth muscle cells (VSMCs) as well as artery tissues from diabetic mice. Inhibition of BMF-AS1 and BMF reduced the calcification and senescence of VSMCs, whereas overexpression of BMF-AS1 and BMF generates the opposite results. Mechanistic analysis showed that BMF-AS1 interacted with BMF directly and up-regulated BMF at both mRNA and protein levels, but BMF did not affect the expression of BMF-AS1. Moreover, knocking down BMF-AS1 and BMF suppressed the calcification and senescence of VSMCs, and BMF knockout (BMF-/-) diabetic mice presented less vascular calcification and aging compared with wild type diabetic mice. In addition, higher coronary artery calcification scores (CACs) and increased plasma BMF concentration were found in patients with DM, and there was a positive correlation between CACs and plasma BMF concentration. Thus, BMF-AS1/BMF plays a key role in promoting high glucose-induced vascular calcification and aging both in vitro and in vivo. BMF-AS1 and BMF represent potential therapeutic targets in diabetic vascular calcification and aging.

20.
Inorg Chem ; 62(6): 2705-2714, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36724403

RESUMO

Separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) poses a huge challenge in the reprocessing of spent nuclear fuel due to their similar chemical properties. N,N'-Diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen) is a potential ligand for the extraction of An(III) from Ln(III), while there are still few reports on the effect of its substituent including electron-withdrawing and electron-donating groups on An(III)/Ln(III) separation. Herein, the interaction of Et-Tol-DAPhen ligands modified by the electron-withdrawing groups (CF3, Br) and electron-donating groups (OH) with Am(III)/Eu(III) ions was investigated using scalar relativistic density functional theory (DFT). The analyses of bond order, quantum theory of atoms in molecules (QTAIM), and molecular orbital (MO) indicate that the substitution groups have a slight effect on the electronic structures of the [M(L-X)(NO3)3] (X = CF3, Br, OH) complexes. However, the thermodynamic results suggest that a ligand with the electron-donating group (L-OH) improves the extraction ability of metal ions, and the ligand modified by the electron-withdrawing group (L-Br) has the best Am(III)/Eu(III) selectivity. This work could render new insights into understanding the effect of electron-withdrawing and electron-donating groups in tuning the selectivity of Et-Tol-DAPhen derivatives and pave the way for designing new ligands modified by substituted groups with better extraction ability and An(III)/Ln(III) selectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...