Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
bioRxiv ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38798575

RESUMO

Dominant X-linked diseases are uncommon due to female X chromosome inactivation (XCI). While random XCI usually protects females against X-linked mutations, Rett syndrome (RTT) is a female neurodevelopmental disorder caused by heterozygous MECP2 mutation. After 6-18 months of typical neurodevelopment, RTT girls undergo poorly understood regression. We performed longitudinal snRNA-seq on cerebral cortex in a construct-relevant Mecp2e1 mutant mouse model of RTT, revealing transcriptional effects of cell type, mosaicism, and sex on progressive disease phenotypes. Across cell types, we observed sex differences in the number of differentially expressed genes (DEGs) with 6x more DEGs in mutant females than males. Unlike males, female DEGs emerged prior to symptoms, were enriched for homeostatic gene pathways in distinct cell types over time, and correlated with disease phenotypes and human RTT cortical cell transcriptomes. Non-cell-autonomous effects were prominent and dynamic across disease progression of Mecp2e1 mutant females, indicating wild-type-expressing cells normalizing transcriptional homeostasis. These results improve understanding of RTT progression and treatment.

2.
Microbiol Spectr ; 12(4): e0344823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38445872

RESUMO

Small sample sizes and loss of sequencing reads during the microbiome data preprocessing can limit the statistical power of differentiating fresh produce phenotypes and prevent the detection of important bacterial species associated with produce contamination or quality reduction. Here, we explored a machine learning-based k-mer hash analysis strategy to identify DNA signatures predictive of produce safety (PS) and produce quality (PQ) and compared it against the amplicon sequence variant (ASV) strategy that uses a typical denoising step and ASV-based taxonomy strategy. Random forest-based classifiers for PS and PQ using 7-mer hash data sets had significantly higher classification accuracy than those using the ASV data sets. We also demonstrated that the proposed combination of integrating multiple data sets and leveraging a 7-mer hash strategy leads to better classification performance for PS and PQ compared to the ASV method but presents lower PS classification accuracy compared to the feature-selected ASV-based taxonomy strategy. Due to the current limitation of generating taxonomy using the 7-mer hash strategy, the ASV-based taxonomy strategy with remarkably less computing time and memory usage is more efficient for PS and PQ classification and applicable for important taxa identification. Results generated from this study lay the foundation for future studies that wish and need to incorporate and/or compare different microbiome sequencing data sets for the application of machine learning in the area of microbial safety and quality of food. IMPORTANCE: Identification of generalizable indicators for produce safety (PS) and produce quality (PQ) improves the detection of produce contamination and quality decline. However, effective sequencing read loss during microbiome data preprocessing and the limited sample size of individual studies restrain statistical power to identify important features contributing to differentiating PS and PQ phenotypes. We applied machine learning-based models using individual and integrated k-mer hash and amplicon sequence variant (ASV) data sets for PS and PQ classification and evaluated their classification performance and found that random forest (RF)-based models using integrated 7-mer hash data sets achieved significantly higher PS and PQ classification accuracy. Due to the limitation of taxonomic analysis for the 7-mer hash, we also developed RF-based models using feature-selected ASV-based taxonomic data sets, which performed better PS classification than those using the integrated 7-mer hash data set. The RF feature selection method identified 480 PS indicators and 263 PQ indicators with a positive contribution to the PS and PQ classification.


Assuntos
Algoritmos , Microbiota , Microbiota/genética , Aprendizado de Máquina
3.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405841

RESUMO

The Ras/ERK pathway drives cell proliferation and other oncogenic behaviors, and quantifying its activity in situ is of high interest in cancer diagnosis and therapy. Pathway activation is often assayed by measuring phosphorylated ERK. However, this form of measurement overlooks dynamic aspects of signaling that can only be observed over time. In this study, we combine a live, single-cell ERK biosensor approach with multiplexed immunofluorescence staining of downstream target proteins to ask how well immunostaining captures the dynamic history of ERK activity. Combining linear regression, machine learning, and differential equation models, we develop an interpretive framework for immunostains, in which Fra-1 and pRb levels imply long term activation of ERK signaling, while Egr-1 and c-Myc indicate recent activation. We show that this framework can distinguish different classes of ERK dynamics within a heterogeneous population, providing a tool for annotating ERK dynamics within fixed tissues.

4.
Nat Commun ; 14(1): 5192, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626024

RESUMO

Multi-modal single cell RNA assays capture RNA content as well as other data modalities, such as spatial cell position or the electrophysiological properties of cells. Compared to dedicated scRNA-seq assays however, they may unintentionally capture RNA from multiple adjacent cells, exhibit lower RNA sequencing depth compared to scRNA-seq, or lack genome-wide RNA measurements. We present scProjection, a method for mapping individual multi-modal RNA measurements to deeply sequenced scRNA-seq atlases to extract cell type-specific, single cell gene expression profiles. We demonstrate several use cases of scProjection, including identifying spatial motifs from spatial transcriptome assays, distinguishing RNA contributions from neighboring cells in both spatial and multi-modal single cell assays, and imputing expression measurements of un-measured genes from gene markers. scProjection therefore combines the advantages of both multi-modal and scRNA-seq assays to yield precise multi-modal measurements of single cells.


Assuntos
Bioensaio , Eletrofisiologia Cardíaca , RNA/genética , Análise Serial de Tecidos , Transcriptoma
5.
Cell Syst ; 14(4): 252-257, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080161

RESUMO

Collective cell behavior contributes to all stages of cancer progression. Understanding how collective behavior emerges through cell-cell interactions and decision-making will advance our understanding of cancer biology and provide new therapeutic approaches. Here, we summarize an interdisciplinary discussion on multicellular behavior in cancer, draw lessons from other scientific disciplines, and identify future directions.


Assuntos
Comportamento de Massa , Neoplasias , Humanos , Comunicação
6.
Genome Biol ; 24(1): 29, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803416

RESUMO

Neural networks such as variational autoencoders (VAE) perform dimensionality reduction for the visualization and analysis of genomic data, but are limited in their interpretability: it is unknown which data features are represented by each embedding dimension. We present siVAE, a VAE that is interpretable by design, thereby enhancing downstream analysis tasks. Through interpretation, siVAE also identifies gene modules and hubs without explicit gene network inference. We use siVAE to identify gene modules whose connectivity is associated with diverse phenotypes such as iPSC neuronal differentiation efficiency and dementia, showcasing the wide applicability of interpretable generative models for genomic data analysis.


Assuntos
Redes Neurais de Computação , Transcriptoma
7.
Genes (Basel) ; 13(5)2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35627266

RESUMO

Tet1 protects against house dust mite (HDM)-induced lung inflammation in mice and alters the lung methylome and transcriptome. In order to explore the role of Tet1 in individual lung epithelial cell types in HDM-induced inflammation, we established a model of HDM-induced lung inflammation in Tet1 knockout and littermate wild-type mice, then studied EpCAM+ lung epithelial cells using single-cell RNA-seq analysis. We identified eight EpCAM+ lung epithelial cell types, among which AT2 cells were the most abundant. HDM challenge altered the relative abundance of epithelial cell types and resulted in cell type-specific transcriptomic changes. Bulk and cell type-specific analysis also showed that loss of Tet1 led to the altered expression of genes linked to augmented HDM-induced lung inflammation, including alarms, detoxification enzymes, oxidative stress response genes, and tissue repair genes. The transcriptomic regulation was accompanied by alterations in TF activities. Trajectory analysis supports that HDM may enhance the differentiation of AP and BAS cells into AT2 cells, independent of Tet1. Collectively, our data showed that lung epithelial cells had common and unique transcriptomic signatures of allergic lung inflammation. Tet1 deletion altered transcriptomic networks in various lung epithelial cells, which may promote allergen-induced lung inflammation.


Assuntos
Asma , Proteínas de Ligação a DNA , Pneumonia , Proteínas Proto-Oncogênicas , Pyroglyphidae , Animais , Asma/genética , Asma/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/imunologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pyroglyphidae/genética , Pyroglyphidae/imunologia , Análise de Sequência de RNA , Análise de Célula Única
8.
Integr Comp Biol ; 61(6): 2011-2019, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048574

RESUMO

The biological challenges facing humanity are complex, multi-factorial, and are intimately tied to the future of our health, welfare, and stewardship of the Earth. Tackling problems in diverse areas, such as agriculture, ecology, and health care require linking vast datasets that encompass numerous components and spatio-temporal scales. Here, we provide a new framework and a road map for using experiments and computation to understand dynamic biological systems that span multiple scales. We discuss theories that can help understand complex biological systems and highlight the limitations of existing methodologies and recommend data generation practices. The advent of new technologies such as big data analytics and artificial intelligence can help bridge different scales and data types. We recommend ways to make such models transparent, compatible with existing theories of biological function, and to make biological data sets readable by advanced machine learning algorithms. Overall, the barriers for tackling pressing biological challenges are not only technological, but also sociological. Hence, we also provide recommendations for promoting interdisciplinary interactions between scientists.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Agricultura , Algoritmos , Animais , Tecnologia
9.
Nat Commun ; 12(1): 1821, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758196

RESUMO

Gene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of these datasets and those from the human and mouse Encyclopedia of DNA Elements projects reveal that a core set of regulatory elements are functionally conserved independent of divergence between species, and that tissue-specific transcription factor occupancy at regulatory elements and their predicted target genes are also conserved. These datasets represent a unique opportunity for the emerging field of comparative epigenomics, as well as the agricultural research community, including species that are globally important food resources.


Assuntos
Bovinos/genética , Galinhas/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Sequências Reguladoras de Ácido Nucleico/genética , Suínos/genética , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Animais , Animais Domésticos/genética , Sequenciamento de Cromatina por Imunoprecipitação , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Camundongos , Especificidade de Órgãos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética
10.
Cell Syst ; 11(2): 161-175.e5, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32726596

RESUMO

Intratumoral heterogeneity is associated with aggressive tumor behavior, therapy resistance, and poor patient outcomes. Such heterogeneity is thought to be dynamic, shifting over periods of minutes to hours in response to signaling inputs from the tumor microenvironment. However, models of this process have been inferred from indirect or post-hoc measurements of cell state, leaving the temporal details of signaling-driven heterogeneity undefined. Here, we developed a live-cell model system in which microenvironment-driven signaling dynamics can be directly observed and linked to variation in gene expression. Our analysis reveals that paracrine signaling between two cell types is sufficient to drive continual diversification of gene expression programs. This diversification emerges from systems-level properties of the EGFR-RAS-ERK signaling cascade, including intracellular amplification of amphiregulin-mediated paracrine signals and differential kinetic filtering by target genes including Fra-1, c-Myc, and Egr1. Our data enable more precise modeling of paracrine-driven transcriptional variation as a generator of gene expression heterogeneity. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Expressão Gênica/genética , Sistema de Sinalização das MAP Quinases/genética , Receptores ErbB/metabolismo , Humanos , Transdução de Sinais
11.
Genome Biol ; 20(1): 247, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752962

RESUMO

Following publication of the original article [1], the following two errors were found in formulae.

12.
Genome Biol ; 20(1): 193, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500668

RESUMO

Technical variation in feature measurements, such as gene expression and locus accessibility, is a key challenge of large-scale single-cell genomic datasets. We show that this technical variation in both scRNA-seq and scATAC-seq datasets can be mitigated by analyzing feature detection patterns alone and ignoring feature quantification measurements. This result holds when datasets have low detection noise relative to quantification noise. We demonstrate state-of-the-art performance of detection pattern models using our new framework, scBFA, for both cell type identification and trajectory inference. Performance gains can also be realized in one line of R code in existing pipelines.


Assuntos
Genômica/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Modelos Genéticos , Análise de Sequência de RNA , Software
13.
Nature ; 573(7772): 61-68, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435019

RESUMO

Elucidating the cellular architecture of the human cerebral cortex is central to understanding our cognitive abilities and susceptibility to disease. Here we used single-nucleus RNA-sequencing analysis to perform a comprehensive study of cell types in the middle temporal gyrus of human cortex. We identified a highly diverse set of excitatory and inhibitory neuron types that are mostly sparse, with excitatory types being less layer-restricted than expected. Comparison to similar mouse cortex single-cell RNA-sequencing datasets revealed a surprisingly well-conserved cellular architecture that enables matching of homologous types and predictions of properties of human cell types. Despite this general conservation, we also found extensive differences between homologous human and mouse cell types, including marked alterations in proportions, laminar distributions, gene expression and morphology. These species-specific features emphasize the importance of directly studying human brain.


Assuntos
Astrócitos/classificação , Evolução Biológica , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Neurônios/classificação , Adolescente , Adulto , Idoso , Animais , Astrócitos/citologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Inibição Neural , Neurônios/citologia , Análise de Componente Principal , RNA-Seq , Análise de Célula Única , Especificidade da Espécie , Transcriptoma/genética , Adulto Jovem
14.
Genome Biol ; 20(1): 166, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31412909

RESUMO

scRNA-seq dataset integration occurs in different contexts, such as the identification of cell type-specific differences in gene expression across conditions or species, or batch effect correction. We present scAlign, an unsupervised deep learning method for data integration that can incorporate partial, overlapping, or a complete set of cell labels, and estimate per-cell differences in gene expression across datasets. scAlign performance is state-of-the-art and robust to cross-dataset variation in cell type-specific expression and cell type composition. We demonstrate that scAlign reveals gene expression programs for rare populations of malaria parasites. Our framework is widely applicable to integration challenges in other domains.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Software , Animais , Biomarcadores/metabolismo , Análise por Conglomerados , Regulação da Expressão Gênica , Células Germinativas/metabolismo , Humanos , Ilhotas Pancreáticas/citologia , Camundongos Endogâmicos C57BL , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Análise de Componente Principal , Alinhamento de Sequência
15.
Anal Chem ; 90(23): 13969-13977, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30358386

RESUMO

Traditional high-throughput drug combination screening requires automatic pipetting of drugs into high-density microtiter plates. Here, a drug-on-pillar platform is proposed for efficient combination drug screening. Using the proposed approach, combination drug screening can be carried out in a plug-and-play manner, allowing for high-throughput screening of large permutations of drug combinations at various concentrations, such that drug dispensing and cell-based screening can be temporally separated and therefore can potentially be performed at distant laboratories. The dispensing is implemented using our recently developed microfluidic pneumatic printing platform, which features a low-cost disposable cartridge that minimizes cross contamination. Moreover, our previously developed drug nanoformulation method with amphiphilic telodendrimers has been utilized to maintain drug stability in a dry form, allowing for convenient drug storage, shipping, and subsequent rehydration. Combining the features described above, we have implemented a 1260-spot drug combination array to study the effect of paired drugs against MDA-MB-231 triple negative human breast cancer cells. This study supports the feasibility of the drug-on-pillar platform for combination drug screening and has provided valuable insight into drug combination efficacy against breast cancer.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Técnicas Analíticas Microfluídicas , Impressão Tridimensional , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
16.
PLoS One ; 11(5): e0156055, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27244050

RESUMO

Gene expression-based signatures help identify pathways relevant to diseases and treatments, but are challenging to construct when there is a diversity of disease mechanisms and treatments in patients with complex diseases. To overcome this challenge, we present a new application of an in silico gene expression deconvolution method, ISOpure-S1, and apply it to identify a common gene expression signature corresponding to response to treatment in 33 juvenile idiopathic arthritis (JIA) patients. Using pre- and post-treatment gene expression profiles only, we found a gene expression signature that significantly correlated with a reduction in the number of joints with active arthritis, a measure of clinical outcome (Spearman rho = 0.44, p = 0.040, Bonferroni correction). This signature may be associated with a decrease in T-cells, monocytes, neutrophils and platelets. The products of most differentially expressed genes include known biomarkers for JIA such as major histocompatibility complexes and interleukins, as well as novel biomarkers including α-defensins. This method is readily applicable to expression datasets of other complex diseases to uncover shared mechanistic patterns in heterogeneous samples.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Juvenil/tratamento farmacológico , Artrite Juvenil/genética , Perfilação da Expressão Gênica , Adolescente , Algoritmos , Biomarcadores , Plaquetas/citologia , Criança , Expressão Gênica , Humanos , Contagem de Linfócitos , Modelos Teóricos , Monócitos/citologia , Neutrófilos/citologia , Projetos Piloto , Linfócitos T/citologia , Resultado do Tratamento , alfa-Defensinas/metabolismo
17.
Nat Methods ; 13(4): 366-70, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950747

RESUMO

Mapping perturbed molecular circuits that underlie complex diseases remains a great challenge. We developed a comprehensive resource of 394 cell type- and tissue-specific gene regulatory networks for human, each specifying the genome-wide connectivity among transcription factors, enhancers, promoters and genes. Integration with 37 genome-wide association studies (GWASs) showed that disease-associated genetic variants--including variants that do not reach genome-wide significance--often perturb regulatory modules that are highly specific to disease-relevant cell types or tissues. Our resource opens the door to systematic analysis of regulatory programs across hundreds of human cell types and tissues (http://regulatorycircuits.org).


Assuntos
Encefalopatias/genética , Encefalopatias/metabolismo , Linhagem da Célula/genética , Biologia Computacional/métodos , Epigenômica , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Variação Genética/genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Mapeamento de Interação de Proteínas/métodos , Fatores de Transcrição/genética
18.
IEEE Trans Med Imaging ; 35(7): 1765-79, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26886973

RESUMO

We propose a unified Bayesian framework for detecting genetic variants associated with disease by exploiting image-based features as an intermediate phenotype. The use of imaging data for examining genetic associations promises new directions of analysis, but currently the most widely used methods make sub-optimal use of the richness that these data types can offer. Currently, image features are most commonly selected based on their relevance to the disease phenotype. Then, in a separate step, a set of genetic variants is identified to explain the selected features. In contrast, our method performs these tasks simultaneously in order to jointly exploit information in both data types. The analysis yields probabilistic measures of clinical relevance for both imaging and genetic markers. We derive an efficient approximate inference algorithm that handles the high dimensionality of image and genetic data. We evaluate the algorithm on synthetic data and demonstrate that it outperforms traditional models. We also illustrate our method on Alzheimer's Disease Neuroimaging Initiative data.


Assuntos
Modelos Estatísticos , Algoritmos , Doença de Alzheimer , Teorema de Bayes , Humanos , Neuroimagem , Fenótipo
19.
N Engl J Med ; 373(10): 895-907, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26287746

RESUMO

BACKGROUND: Genomewide association studies can be used to identify disease-relevant genomic regions, but interpretation of the data is challenging. The FTO region harbors the strongest genetic association with obesity, yet the mechanistic basis of this association remains elusive. METHODS: We examined epigenomic data, allelic activity, motif conservation, regulator expression, and gene coexpression patterns, with the aim of dissecting the regulatory circuitry and mechanistic basis of the association between the FTO region and obesity. We validated our predictions with the use of directed perturbations in samples from patients and from mice and with endogenous CRISPR-Cas9 genome editing in samples from patients. RESULTS: Our data indicate that the FTO allele associated with obesity represses mitochondrial thermogenesis in adipocyte precursor cells in a tissue-autonomous manner. The rs1421085 T-to-C single-nucleotide variant disrupts a conserved motif for the ARID5B repressor, which leads to derepression of a potent preadipocyte enhancer and a doubling of IRX3 and IRX5 expression during early adipocyte differentiation. This results in a cell-autonomous developmental shift from energy-dissipating beige (brite) adipocytes to energy-storing white adipocytes, with a reduction in mitochondrial thermogenesis by a factor of 5, as well as an increase in lipid storage. Inhibition of Irx3 in adipose tissue in mice reduced body weight and increased energy dissipation without a change in physical activity or appetite. Knockdown of IRX3 or IRX5 in primary adipocytes from participants with the risk allele restored thermogenesis, increasing it by a factor of 7, and overexpression of these genes had the opposite effect in adipocytes from nonrisk-allele carriers. Repair of the ARID5B motif by CRISPR-Cas9 editing of rs1421085 in primary adipocytes from a patient with the risk allele restored IRX3 and IRX5 repression, activated browning expression programs, and restored thermogenesis, increasing it by a factor of 7. CONCLUSIONS: Our results point to a pathway for adipocyte thermogenesis regulation involving ARID5B, rs1421085, IRX3, and IRX5, which, when manipulated, had pronounced pro-obesity and anti-obesity effects. (Funded by the German Research Center for Environmental Health and others.).


Assuntos
Adipócitos/metabolismo , Obesidade/genética , Proteínas/genética , Termogênese/genética , Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epigenômica , Expressão Gênica , Engenharia Genética , Humanos , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Obesidade/metabolismo , Fenótipo , Edição de RNA , Risco , Termogênese/fisiologia
20.
BMC Bioinformatics ; 16: 156, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25972088

RESUMO

BACKGROUND: Tumour samples containing distinct sub-populations of cancer and normal cells present challenges in the development of reproducible biomarkers, as these biomarkers are based on bulk signals from mixed tumour profiles. ISOpure is the only mRNA computational purification method to date that does not require a paired tumour-normal sample, provides a personalized cancer profile for each patient, and has been tested on clinical data. Replacing mixed tumour profiles with ISOpure-preprocessed cancer profiles led to better prognostic gene signatures for lung and prostate cancer. RESULTS: To simplify the integration of ISOpure into standard R-based bioinformatics analysis pipelines, the algorithm has been implemented as an R package. The ISOpureR package performs analogously to the original code in estimating the fraction of cancer cells and the patient cancer mRNA abundance profile from tumour samples in four cancer datasets. CONCLUSIONS: The ISOpureR package estimates the fraction of cancer cells and personalized patient cancer mRNA abundance profile from a mixed tumour profile. This open-source R implementation enables integration into existing computational pipelines, as well as easy testing, modification and extension of the model.


Assuntos
Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Software , Humanos , Masculino , Modelos Teóricos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...