Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1287028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077376

RESUMO

Introduction: In solid-organ transplantation, human leukocyte antigen (HLA) donor-specific antibodies (DSA) are strongly associated with graft rejection, graft loss, and patient death. The predominant tests used for detecting HLA DSA before and after solid-organ transplantation are HLA single antigen bead (SAB) assays. However, SAB assays may not detect antibodies directed against HLA epitopes that are not represented in the SAB. The prevalence and potential impact of unrepresented HLA epitopes are expected to vary by ethnicity, but have not been thoroughly investigated. To address this knowledge gap, HLA allele frequencies from seven ethnic populations were compared with HLA proteins present in SAB products from two manufacturers to determine unrepresented HLA proteins. Materials: Allele frequencies were obtained from the Common, Intermediate, and Well Documented HLA catalog v3.0, and frequencies of unrepresented HLA types were calculated. Next-generation sequencing was used to determine HLA types of 60 deceased solid-organ donors, and results were used to determine if their HLA-A, -B, -C, and -DRB1 proteins were not present in SAB reagents from two vendors. Unrepresented HLA proteins were compared with the most similar protein in SAB assays from either vendor and then visualized using modeling software to assess potential HLA epitopes. Results: For the seven ethnic populations, 0.5% to 11.8% of each population had HLA proteins not included in SAB assays from one vendor. Non-European populations had greater numbers of unrepresented alleles. Among the deceased donors, 26.7% (16/60) had at least one unrepresented HLA-A, -B, -C, or -DRB1 protein. Structural modeling demonstrated that a subset of these had potential HLA epitopes that are solvent accessible amino acid mismatches and are likely to be accessible to B cell receptors. Discussion: In conclusion, SAB assays cannot completely rule out the presence of HLA DSA. HLA epitopes not represented in those assays vary by ethnicity and should not be overlooked, especially in non-European populations. Allele-level HLA typing can help determine the potential for HLA antibodies that could evade detection.


Assuntos
Etnicidade , Transplante de Rim , Humanos , Etnicidade/genética , Anticorpos , Antígenos HLA , Doadores de Tecidos , Epitopos/genética , Antígenos HLA-A
2.
Cryst Growth Des ; 23(2): 681-693, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36747575

RESUMO

Scaling up and technology transfer of crystallization processes have been and continue to be a challenge. This is often due to the stochastic nature of primary nucleation, various scale dependencies of nucleation mechanisms, and the multitude of scale-up approaches. To better understand these dependencies, a series of isothermal induction time studies were performed across a range of vessel volumes, impeller types, and impeller speeds. From these measurements, the nucleation rate and growth time were estimated as parameters of an induction time distribution model. Then using machine learning techniques, correlations between the vessel hydrodynamic features, calculated from computational flow dynamic simulations, and nucleation kinetic parameters were analyzed. Of the 18 machine learning models trained, two models for the nucleation rate were found to have the best performance (in terms of % of predictions within experimental variance): a nonlinear random Forest model and a nonlinear gradient boosting model. For growth time, a nonlinear gradient boosting model was found to outperform the other models tested. These models were then ensembled to directly predict the probability of nucleation, at a given time, solely from hydrodynamic features with an overall root mean square error of 0.16. This work shows how machine learning approaches can be used to analyze limited datasets of induction times to provide insights into what hydrodynamic parameters should be considered in the scale-up of an unseeded crystallization process.

3.
Cryst Growth Des ; 22(8): 4730-4744, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35942120

RESUMO

The objective of the research was to improve the process design of a combined antisolvent-cooling crystallization to reduce the degree of agglomeration of a real active pharmaceutical ingredient product, which was manufactured using a crystallization stage employing a methanol/water solvent system. Knowledge was gained from the use of process analytical technology (PAT) tools to monitor the process variables, allowing particle size, degree of agglomeration, solute concentration, and supersaturation to be tracked throughout the process. Based on knowledge of the solubility behavior and interpretation of the PAT histories, changes were made to the sequences of antisolvent addition and cooling within the crystallization process to reduce agglomeration in the final product. Different seed loadings and seeding addition points were also investigated to maintain operation within lower supersaturation regions of the phase diagram to limit agglomeration and avoid an undesired polymorphic transformation to an unstable form. The improved sequences of operations and seeding conditions did not provide sufficient improvement in the product quality and so were augmented by applying wet milling for further deagglomeration followed by temperature cycling to remove fine particles generated during milling. Open-loop heating and cooling cycles produced some limited improvements, whereas closed-loop direct nucleation control methods using FBRM as a feedback sensor for particle counts per second were much more successful at producing high-quality crystals of the desired polymorphic form. The work shows that understanding the trajectory of the process through the phase diagram to follow appropriate supersaturation profiles gives improved control of the various kinetic mechanisms and can be used to improve the quality of the final product.

4.
J Neuroophthalmol ; 42(2): 239-245, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427281

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disease (NMOSD) and multiple sclerosis (MS) share clinical presentations including optic neuritis and brainstem syndromes. Internuclear ophthalmoplegia (INO) is characterized by slowed ipsilateral adduction saccades and results from a lesion in the medial longitudinal fasciculus (MLF). Although INO is a common clinical finding in MS, its prevalence in NMOSD is unknown. The objective of this work is to determine the comparative frequencies of INO in patients with NMOSD and MS and compare clinical features of both disease processes. METHODS: This is a retrospective study of patients 18 years and older who have an established diagnosis of NMOSD or MS and were evaluated by both neuro-ophthalmology and neuro-immunology specialists between 2014 and 2020. Electronic medical records were screened for documentation of an acute INO at any time during follow-up. Incidence rates were calculated from number of cases of new-onset INO and patient years observed. Logistic regression was used to evaluate the likelihood of developing an INO at any time point for NMOSD vs MS patients. Multivariable analysis was performed by adjusting for age, race, gender, and length of follow-up. RESULTS: Two hundred eighty patients (80 NMOSD, 200 MS) were included. Age range was 18-79 years with a mean age of 35.14 (SD ± 12.41 years). Average length of follow-up in MS and NMOSD patients was 4.18 years vs 3.79 years, respectively (P > 0.05), and disease duration before the start of the study in MS and NMOSD was 8.76 years vs 4.65 years, respectively (P < 0.01). Mean disease duration and follow-up time of both groups was 7.58 years and 4.07 ± 2.51 years, respectively. NMOSD patients were predominantly seropositive for AQP4 antibody (61.25%, n = 49). Individuals who had MOG antibody but also met NMOSD criteria were also included (18.75%, n = 15). The frequency of INO at any time point was 1.25% (n = 1) in NMOSD compared with 16% (n = 32) in MS. The incidence rate of new-onset INO in NMOSD (excluding MOGAD) was 3.8/1,000 person years and 23.9/1,000 person years in MS. Adjusted analysis showed that NMOSD patients were 13.89 times (odds ratio [OR] 0.07, 95% confidence interval [CI] 0.01-0.598, P = 0.015) less likely to develop an INO compared with those with MS when including MOGAD patients, 12.5 times less likely (OR 0.08, 95% CI: 0.10-0.67, P = 0.02) when excluding MOGAD patients and 9.62 times less likely (OR 0.10, 95% CI: 0.01-0.87, P = 0.036) for AQP4+ patients. CONCLUSIONS: Our study shows that the incidence of new INO (3.8 vs 23.9 per 1,000 person years), and the odds of having INO at any time point are significantly lower in NMOSD than MS. This suggests that INO and consequently MLF lesions are less common in NMOSD. The presence of an INO may help in the differentiation of NMOSD from MS and may aid in earlier implementation of disease appropriate therapy.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Transtornos da Motilidade Ocular , Adolescente , Adulto , Idoso , Aquaporina 4 , Autoanticorpos , Humanos , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/epidemiologia , Glicoproteína Mielina-Oligodendrócito , Neuromielite Óptica/complicações , Neuromielite Óptica/diagnóstico , Neuromielite Óptica/epidemiologia , Estudos Retrospectivos , Adulto Jovem
5.
HLA ; 97(5): 463-464, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33369190

RESUMO

HLA-B*56:75 has a nonsynonymous C to G substitution in codon 73 compared to HLA-B*56:01:01:02.


Assuntos
Antígenos HLA-B , Alelos , Códon , Éxons/genética , Antígenos HLA-B/genética , Humanos , Análise de Sequência de DNA
6.
Crystals (Basel) ; 9(7)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33224522

RESUMO

Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. Cryoprotective agents (CPAs), such as glycerol and propylene glycol, have been used as ingredients to treat cellular tissues and organs to prevent ice crystal's formation at low temperatures. To assess AFP's function in CPA solutions, we have the applied site-directed spin labeling technique to a Type I AFP. A two-step process to prevent bulk freezing of the CPA solutions was observed by the cryo-photo microscopy, i.e., (1) thermodynamic freezing point depression by the CPAs; and (2) inhibition to the growth of seed ice crystals by the AFP. Electron paramagnetic resonance (EPR) experiments were also carried out from room temperature to 97 K, and vice versa. The EPR results indicate that the spin labeled AFP bound to ice surfaces, and inhibit the growths of ice through the bulk freezing processes in the CPA solutions. The ice-surface bound AFP in the frozen matrices could also prevent the formation of large ice crystals during the melting processes of the solutions. Our study illustrates that AFPs can play an active role in CPA solutions for cryopreservation applications.

7.
Eur Biophys J ; 47(6): 611-630, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29487966

RESUMO

The site-directed spin labeling (SDSL) technique was used to examine the antifreeze mechanisms of type-I antifreeze proteins (AFPs). The effects on the growth of seed ice crystals by the spin-label groups attached to different side chains of the AFPs were observed, and the states of water molecules surrounding the spin-label groups were probed via analyses of variable-temperature (VT) dependent electron paramagnetic resonance (EPR) spectra. The first set of experiments revealed the antifreeze activities of the spin-labeled AFPs at the microscopic level, while the second set of experiments displayed those at the molecular level. The experimental results confirmed the putative ice-binding surface (IBS) of type-I AFPs. The VT EPR spectra indicate that type-I AFPs can inhibit the nucleation of seed ice crystals down to ~ - 20 °C in their aqueous solutions. Thus, the present authors believe that AFPs protect organisms from freezing damage in two ways: (1) inhibiting the nucleation of seed ice crystals, and (2) hindering the growth of seed ice crystals once they have formed. The first mechanism should play a more significant role in protecting against freezing damage among organisms living in cold environments. The VT EPR spectra also revealed that liquid-like water molecules existed around the spin-labeled non-ice-binding side chains of the AFPs frozen within the ice matrices, and ice surrounding the spin-label groups melted at subzero temperatures during the heating process. This manuscript concludes with the proposed model of antifreeze mechanisms of AFPs based on the experimental results.


Assuntos
Proteínas Anticongelantes/química , Marcadores de Spin , Proteínas Anticongelantes/genética , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Gelo , Modelos Moleculares , Mutação , Conformação Proteica
8.
Int J Pharm ; 533(1): 49-61, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-28935256

RESUMO

Control of crystal size and shape is crucially important for crystallization process development in the pharmaceutical industries. In general crystals of large size and low aspect ratio are desired for improved downstream manufacturability. It can be extremely challenging to design crystallization processes that achieve these targets for active pharmaceutical ingredients (APIs) that have very slow growth kinetics and needle-like morphology. In this work, a batch cooling crystallization process for a GlaxoSmithKline patented API, which is characterized by very slow growth rate and needle morphology, was studied and improved using process analytical technology (PAT) based feedback control techniques and in situ immersion milling. Four specific approaches were investigated: Supersaturation control (SSC), direct nucleation control (DNC), sequential milling-DNC, and simultaneous milling-DNC. This is the first time that immersion wet milling is combined with feedback control in a batch crystallization process. All four approaches were found to improve crystal size and/or shape compared to simple unseeded or seeded linear cooling crystallizations. DNC provided higher quality crystals than SSC, and sequential and simultanesou milling-DNC approaches could reduce particle 2D aspect ratio without generating too much fines. In addition, an ultra-performance liquid chromatography (UPLC) system was used online as a novel PAT tool in the crystallization study.


Assuntos
Química Farmacêutica/métodos , Tecnologia Farmacêutica/métodos , Cristalização , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Preparações Farmacêuticas/química
9.
Langmuir ; 29(10): 3292-300, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23414233

RESUMO

We investigated the effect of spherical agglomeration of heterogeneous crystalline substrates on the nucleation of acetaminophen (AAP). Optical and electron microscopy showed that the surface morphologies of single crystal triclinic lactose and D-mannitol differed significantly from their counterparts formed via spherical agglomeration. Spherical agglomerates of lactose were shown to enhance the nucleation rate of acetaminophen (AAP) by a factor of 11 compared to single crystal lactose; however, no such enhancement was observed for D-mannitol. X-ray powder diffraction identified the presence of new crystal faces of lactose present only in the spherical agglomerates However, D-mannitol did not show any significant change in crystal morphology. The new crystal faces of triclinic lactose were analyzed using geometric lattice matching software and molecular dynamics simulations to establish any new and significant epitaxial matches between lactose and AAP. A coincident lattice match and a large favorable energy interaction from hydrogen bonding were observed between the (141¯) and (001) crystal faces of lactose and AAP, respectively. The enhanced nucleation kinetics, X-ray data, and computational studies indicated that the spherical crystallization of lactose exposed the (141¯) face on the surface of the agglomerates, which subsequently enhanced the nucleation rate of AAP through geometric lattice matching and molecular functionality. This study highlights the importance of exploring different heterogeneous substrate morphologies for enhancing nucleation kinetics.


Assuntos
Acetaminofen/química , Excipientes/química , Cinética , Lactose/química , Microscopia Eletrônica , Simulação de Acoplamento Molecular , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA