Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(52): 35668-84, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25395624

RESUMO

The ß2-adrenergic receptor (ß2AR) is a prototypical G protein-coupled receptor that mediates many hormonal responses, including cardiovascular and pulmonary function. ß-Agonists used to combat hypercontractility in airway smooth muscle stimulate ß2AR-dependent cAMP production that ultimately promotes airway relaxation. Chronic stimulation of the ß2AR by long acting ß-agonists used in the treatment of asthma can promote attenuated responsiveness to agonists and an increased frequency of fatal asthmatic attacks. ß2AR desensitization to ß-agonists is primarily mediated by G protein-coupled receptor kinases and ß-arrestins that attenuate receptor-Gs coupling and promote ß2AR internalization and degradation. A biased agonist that can selectively stimulate Gs signaling without promoting receptor interaction with G protein-coupled receptor kinases and ß-arrestins should serve as an advantageous asthma therapeutic. To identify such molecules, we screened ∼50 lipidated peptides derived from the intracellular loops of the ß2AR, known as pepducins. This screen revealed two classes of Gs-biased pepducins, receptor-independent and receptor-dependent, as well as several ß-arrestin-biased pepducins. The receptor-independent Gs-biased pepducins operate by directly stimulating G protein activation. In contrast, receptor-dependent Gs-biased pepducins appear to stabilize a Gs-biased conformation of the ß2AR that couples to Gs but does not undergo G protein-coupled receptor kinase-mediated phosphorylation or ß-arrestin-mediated internalization. Functional studies in primary human airway smooth muscle cells demonstrate that Gs-biased pepducins are not subject to conventional desensitization and thus may be good candidates for the development of next generation asthma therapeutics. Our study reports the first Gs-biased activator of the ß2AR and provides valuable tools for the study of ß2AR function.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Fragmentos de Peptídeos/farmacologia , Regulação Alostérica , Sequência de Aminoácidos , AMP Cíclico/biossíntese , Células HEK293 , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Biblioteca de Peptídeos , Fosforilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Sistemas do Segundo Mensageiro
2.
FASEB J ; 28(10): 4509-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25053617

RESUMO

G-protein-coupled receptors have been shown to assemble at least as dimers early in the biosynthetic path, but some evidence suggests that they can also form larger oligomeric complexes. Using the human chemokine receptors CXCR4 and CCR2 as models, we directly probed the existence of higher order homo- and heterooligomers in human embryonic kidney cells. Combining bimolecular fluorescence and luminescence complementation (BiFC, BiLC) with bioluminescence resonance energy transfer (BRET) assays, we show that CXCR4 and CCR2 can assemble as homo- and heterooligomers, forming at least tetramers. Selective activation of CCR2 with the human monocyte chemotactic protein 1 (MCP-1) resulted in trans-conformational rearrangement of the CXCR4 dimer with an EC50 of 19.9 nM, compatible with a CCR2 action. Moreover, MCP-1 promoted the engagement of Gαi1, Gα13, Gαz, and ßarrestin2 to the heterooligomer, resulting in calcium signaling that was synergistically potentiated on coactivation of CCR2 and CXCR4, demonstrating that complexes larger than dimers reach the cell surface as functional units. A mutation of CXCR4 (N119K), which prevents Gi activation, also affects the CCR2-promoted engagement of Gαi1 and ßarrestin2 by the heterooligomer, supporting the occurrence of transprotomer regulation. Together, the results demonstrate that homo- and heteromultimeric CXCR4 and CCR2 can form functional signaling complexes that have unique properties.


Assuntos
Arrestinas/metabolismo , Quimiocina CCL2/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Receptores CCR2/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Células HEK293 , Humanos , Ligação Proteica , Multimerização Proteica , Receptores CXCR4/genética , beta-Arrestinas
3.
Proc Natl Acad Sci U S A ; 110(52): E5088-97, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24309376

RESUMO

Short lipidated peptide sequences derived from various intracellular loop regions of G protein-coupled receptors (GPCRs) are named pepducins and act as allosteric modulators of a number of GPCRs. Recently, a pepducin selectively targeting the C-X-C chemokine receptor type 4 (CXCR4) was found to be an allosteric agonist, active in both cell-based assays and in vivo. However, the precise mechanism of action of this class of ligands remains poorly understood. In particular, given the diversity of signaling effectors that can be engaged by a given receptor, it is not clear whether pepducins can show biased signaling leading to functional selectivity. To explore the ligand-biased potential of pepducins, we assessed the effect of the CXCR4 selective pepducin, ATI-2341, on the ability of the receptor to engage the inhibitory G proteins (Gi1, Gi2 and Gi3), G13, and ß-arrestins. Using bioluminescence resonance energy transfer-based biosensors, we found that, in contrast to the natural CXCR4 ligand, stromal cell-derived factor-1α, which promotes the engagement of the three Gi subtypes, G13 and the two ß-arrestins, ATI-2341 leads to the engagement of the Gi subtypes but not G13 or the ß-arrestins. Calculation of the transduction ratio for each pathway revealed a strong negative bias of ATI-2341 toward G13 and ß-arrestins, revealing functional selectivity for the Gi pathways. The negative bias toward ß-arrestins results from the reduced ability of the pepducin to promote GPCR kinase-mediated phosphorylation of the receptor. In addition to revealing ligand-biased signaling of pepducins, these findings shed some light on the mechanism of action of a unique class of allosteric regulators.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/agonistas , Células-Tronco Hematopoéticas/metabolismo , Lipopeptídeos/metabolismo , Receptores CXCR4/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Western Blotting , Citometria de Fluxo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos
4.
Curr Mol Pharmacol ; 4(3): 187-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21488836

RESUMO

The preservation of a functional pancreatic ß-cell mass has become a major point of research in type 2 diabetes (T2D) and the future therapies of T2D notably aim at protecting the ß-cell from dysfunction and apoptotic death. ß-cell proliferation, survival and insulin secretion are regulated by crucial transcription factors which are activated by signalling pathways engaged by nutrients, G-protein coupled receptors or tyrosine kinase receptors. Among these factors, the cAMP-responsive element-binding protein (CREB) has emerged as a key transcriptional element for the maintenance of an efficient glucose sensing, insulin exocytosis, insulin gene transcription and ß-cell survival. CREB activates the transcription of target genes within the ß-cells in response to a diverse array of stimuli including glucose, incretin hormones such as the glucagon-like peptide-1 (GLP-1) or the gastric inhibitory polypeptide (GIP), the pituitary adenylate cyclase-activating polypeptide (PACAP), or growth factors such as the insulin like growth factor-1 (IGF-1). All these stimuli phosphorylate CREB at a particular residue, serine 133, which is required for CREB-mediated transcription. However, the molecular mechanisms by which CREB activates gene transcription in ß-cells vary according to the nature of the stimulus. These mechanisms involve different protein kinases, scaffold proteins and cofactors which allow CREB to specifically regulate the expression of crucial genes such as insulin, BCL-2, cyclin D1, cyclin A2 or IRS-2. In this review, we summarize the signalling pathways that lead to CREB phosphorylation in ß-cells and the molecular features of each signalling pathway that rise specificity at the level of CREB activation and regulation.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Transcrição Gênica
5.
J Biol Chem ; 285(3): 1989-2002, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19915011

RESUMO

Strategies based on activating GLP-1 receptor (GLP-1R) are intensively developed for the treatment of type 2 diabetes. The exhaustive knowledge of the signaling pathways linked to activated GLP-1R within the beta-cells is of major importance. In beta-cells, GLP-1 activates the ERK1/2 cascade by diverse pathways dependent on either Galpha(s)/cAMP/cAMP-dependent protein kinase (PKA) or beta-arrestin 1, a scaffold protein. Using pharmacological inhibitors, beta-arrestin 1 small interfering RNA, and islets isolated from beta-arrestin 1 knock-out mice, we demonstrate that GLP-1 stimulates ERK1/2 by two temporally distinct pathways. The PKA-dependent pathway mediates rapid and transient ERK1/2 phosphorylation that leads to nuclear translocation of the activated kinases. In contrast, the beta-arrestin 1-dependent pathway produces a late ERK1/2 activity that is restricted to the beta-cell cytoplasm. We further observe that GLP-1 phosphorylates the cytoplasmic proapoptotic protein Bad at Ser-112 but not at Ser-155. We find that the beta-arrestin 1-dependent ERK1/2 activation engaged by GLP-1 mediates the Ser-112 phosphorylation of Bad, through p90RSK activation, allowing the association of Bad with the scaffold protein 14-3-3, leading to its inactivation. beta-Arrestin 1 is further found to mediate the antiapoptotic effect of GLP-1 in beta-cells through the ERK1/2-p90RSK-phosphorylation of Bad. This new regulatory mechanism engaged by activated GLP-1R involving a beta-arrestin 1-dependent spatiotemporal regulation of the ERK1/2-p90RSK activity is now suspected to participate in the protection of beta-cells against apoptosis. Such signaling mechanism may serve as a prototype to generate new therapeutic GLP-1R ligands.


Assuntos
Apoptose/efeitos dos fármacos , Arrestinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Células Secretoras de Insulina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Serina , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteína de Morte Celular Associada a bcl/química , beta-Arrestina 1 , beta-Arrestinas
6.
J Biol Chem ; 284(7): 4332-42, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19074139

RESUMO

In pancreatic beta-cells, the pituitary adenylate cyclase-activating polypeptide (PACAP) exerts a potent insulin secretory effect via PAC(1) and VPAC receptors (Rs) through the Galpha(s)/cAMP/protein kinase A pathway. Here, we investigated the mechanisms linking PAC(1)R to ERK1/2 activation in INS-1E beta-cells and pancreatic islets. PACAP caused a transient (5 min) increase in ERK1/2 phosphorylation via PAC(1)Rs and promoted nuclear translocation of a fraction of cytosolic p-ERK1/2. Both protein kinase A- and Src-dependent pathways mediated this transient ERK1/2 activation. Moreover, PACAP potentiated glucose-induced long-lasting ERK1/2 activation. Blocking Ca(2+) influx abolished glucose-induced ERK1/2 activation and PACAP potentiating effect. Glucose stimulation during KCl depolarization showed that, in addition to the triggering signal (rise in cytosolic [Ca(2+)]), the amplifying pathway was also involved in glucose-induced sustained ERK1/2 activation and was required for PACAP potentiation. The finding that at 30 min glucose-induced p-ERK1/2 was detected in both cytosol and nucleus while the potentiating effect of PACAP was only observed in the cytosol, suggested the involvement of the scaffold protein beta-arrestin. Indeed, beta-arrestin 1 (beta-arr1) depletion (in beta-arr1 knockout mouse islets or in INS-1E cells by siRNA) completely abolished PACAP potentiation of long-lasting ERK1/2 activation by glucose. Finally, PACAP potentiated glucose-induced CREB transcriptional activity and IRS-2 mRNA expression mainly via the ERK1/2 signaling pathway, and likewise, beta-arr1 depletion reduced the PACAP potentiating effect on IRS-2 expression. These results establish for the first time that PACAP potentiates glucose-induced long-lasting ERK1/2 activation via a beta-arr1-dependent pathway and thus provide new insights concerning the mechanisms of PACAP and glucose actions in pancreatic beta-cells.


Assuntos
Arrestinas/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Edulcorantes/farmacologia , Animais , Arrestinas/genética , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Glucose/metabolismo , Proteínas Substratos do Receptor de Insulina/biossíntese , Proteínas Substratos do Receptor de Insulina/genética , Células Secretoras de Insulina/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Edulcorantes/metabolismo , Fatores de Tempo , beta-Arrestina 1 , beta-Arrestinas
7.
J Biol Chem ; 282(16): 12154-63, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17310064

RESUMO

G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.


Assuntos
Receptores Acoplados a Proteínas G/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/química , Linhagem Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Humanos , Fosfatos de Inositol/química , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores de GABA-B/metabolismo , Rodopsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...