Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443044

RESUMO

Composite materials are a combination of two or more types of materials used to enhance the mechanical and structural properties of engineering products. When fibers are mixed in the polymeric matrix, the composite material is known as fiber-reinforced polymer (FRP). FRP materials are widely used in structural applications related to defense, automotive, aerospace, and sports-based industries. These materials are used in producing lightweight components with high tensile strength and rigidity. The fiber component in fiber-reinforced polymers provides the desired strength-to-weight ratio; however, the polymer portion costs less, and the process of making the matrix is quite straightforward. There is a high demand in industrial sectors, such as defense and military, aerospace, automotive, biomedical and sports, to manufacture these fiber-reinforced polymers using 3D printing and additive manufacturing technologies. FRP composites are used in diversified applications such as military vehicles, shelters, war fighting safety equipment, fighter aircrafts, naval ships, and submarine structures. Techniques to fabricate composite materials, degrade the weight-to-strength ratio and the tensile strength of the components, and they can play a critical role towards the service life of the components. Fused deposition modeling (FDM) is a technique for 3D printing that allows layered fabrication of parts using thermoplastic composites. Complex shape and geometry with enhanced mechanical properties can be obtained using this technique. This paper highlights the limitations in the development of FRPs and challenges associated with their mechanical properties. The future prospects of carbon fiber (CF) and polymeric matrixes are also mentioned in this study. The study also highlights different areas requiring further investigation in FDM-assisted 3D printing. The available literature on FRP composites is focused only on describing the properties of the product and the potential applications for it. It has been observed that scientific knowledge has gaps when it comes to predicting the performance of FRP composite parts fabricated under 3D printing (FDM) techniques. The mechanical properties of 3D-printed FRPs were studied so that a correlation between the 3D printing method could be established. This review paper will be helpful for researchers, scientists, manufacturers, etc., working in the area of FDM-assisted 3D printing of FRPs.

2.
Epidemiol Infect ; 146(12): 1575-1583, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29860954

RESUMO

Although measles incidence has reached historic lows in many parts of the world, the disease still causes substantial morbidity globally. Even where control programs have succeeded in driving measles locally extinct, unless vaccination coverage is maintained at extremely high levels, susceptible numbers may increase sufficiently to spark large outbreaks. Human mobility will drive potentially infectious contacts and interact with the landscape of susceptibility to determine the pattern of measles outbreaks. These interactions have proved difficult to characterise empirically. We explore the degree to which new sources of data combined with existing public health data can be used to evaluate the landscape of immunity and the role of spatial movement for measles introductions by retrospectively evaluating our ability to predict measles outbreaks in vaccinated populations. Using inferred spatial patterns of accumulation of susceptible individuals and travel data, we predicted the timing of epidemics in each district of Pakistan during a large measles outbreak in 2012-2013 with over 30 000 reported cases. We combined these data with mobility data extracted from over 40 million mobile phone subscribers during the same time frame in the country to quantify the role of connectivity in the spread of measles. We investigate how different approaches could contribute to targeting vaccination efforts to reach districts before outbreaks started. While some prediction was possible, accuracy was low and we discuss key uncertainties linked to existing data streams that impede such inference and detail what data might be necessary to robustly infer timing of epidemics.


Assuntos
Surtos de Doenças/prevenção & controle , Vacina contra Sarampo/administração & dosagem , Sarampo/epidemiologia , Sarampo/prevenção & controle , Cobertura Vacinal/estatística & dados numéricos , Suscetibilidade a Doenças , Feminino , Humanos , Programas de Imunização , Incidência , Lactente , Masculino , Modelos Estatísticos , Paquistão/epidemiologia , Risco
3.
J R Soc Interface ; 15(139)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29467257

RESUMO

Most models of product adoption predict S-shaped adoption curves. Here we report results from two country-scale experiments in which we find linear adoption curves. We show evidence that the observed linear pattern is the result of active information-seeking behaviour: individuals actively pulling information from several central sources facilitated by modern Internet searches. Thus, a constant baseline rate of interest sustains product diffusion, resulting in a linear diffusion process instead of the S-shaped curve of adoption predicted by many diffusion models. The main experiment seeded 70 000 (48 000 in Experiment 2) unique voucher codes for the same product with randomly sampled nodes in a social network of approximately 43 million individuals with about 567 million ties. We find that the experiment reached over 800 000 individuals with 80% of adopters adopting the same product-a winner-take-all dynamic consistent with search engine driven rankings that would not have emerged had the products spread only through a network of social contacts. We provide evidence for (and characterization of) this diffusion process driven by active information-seeking behaviour through analyses investigating (a) patterns of geographical spreading; (b) the branching process; and (c) diffusion heterogeneity. Using data on adopters' geolocation we show that social spreading is highly localized, while on-demand diffusion is geographically independent. We also show that cascades started by individuals who actively pull information from central sources are more effective at spreading the product among their peers.


Assuntos
Disseminação de Informação , Comportamento de Busca de Informação , Modelos Teóricos , Rede Social , Feminino , Humanos , Masculino
4.
Nat Commun ; 8(1): 2069, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234011

RESUMO

Seasonal variation in human mobility is globally ubiquitous and affects the spatial spread of infectious diseases, but the ability to measure seasonality in human movement has been limited by data availability. Here, we use mobile phone data to quantify seasonal travel and directional asymmetries in Kenya, Namibia, and Pakistan, across a spectrum from rural nomadic populations to highly urbanized communities. We then model how the geographic spread of several acute pathogens with varying life histories could depend on country-wide connectivity fluctuations through the year. In all three countries, major national holidays are associated with shifts in the scope of travel. Within this broader pattern, the relative importance of particular routes also fluctuates over the course of the year, with increased travel from rural to urban communities after national holidays, for example. These changes in travel impact how fast communities are likely to be reached by an introduced pathogen.


Assuntos
Doenças Transmissíveis/epidemiologia , Migração Humana/estatística & dados numéricos , Modelos Biológicos , Estações do Ano , Viagem/estatística & dados numéricos , Telefone Celular , Doenças Transmissíveis/transmissão , Sistemas de Informação Geográfica , Migração Humana/tendências , Humanos , Incidência , Quênia/epidemiologia , Namíbia/epidemiologia , Paquistão/epidemiologia , População Rural/estatística & dados numéricos , População Rural/tendências , Viagem/tendências , População Urbana/estatística & dados numéricos , População Urbana/tendências
5.
Clim Change ; 138(3): 505-519, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-32355373

RESUMO

Large-scale data from digital infrastructure, like mobile phone networks, provides rich information on the behavior of millions of people in areas affected by climate stress. Using anonymized data on mobility and calling behavior from 5.1 million Grameenphone users in Barisal Division and Chittagong District, Bangladesh, we investigate the effect of Cyclone Mahasen, which struck Barisal and Chittagong in May 2013. We characterize spatiotemporal patterns and anomalies in calling frequency, mobile recharges, and population movements before, during and after the cyclone. While it was originally anticipated that the analysis might detect mass evacuations and displacement from coastal areas in the weeks following the storm, no evidence was found to suggest any permanent changes in population distributions. We detect anomalous patterns of mobility both around the time of early warning messages and the storm's landfall, showing where and when mobility occurred as well as its characteristics. We find that anomalous patterns of mobility and calling frequency correlate with rainfall intensity (r = .75, p < 0.05) and use calling frequency to construct a spatiotemporal distribution of cyclone impact as the storm moves across the affected region. Likewise, from mobile recharge purchases we show the spatiotemporal patterns in people's preparation for the storm in vulnerable areas. In addition to demonstrating how anomaly detection can be useful for modeling human adaptation to climate extremes, we also identify several promising avenues for future improvement of disaster planning and response activities.

6.
Proc Natl Acad Sci U S A ; 112(38): 11887-92, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351662

RESUMO

The recent emergence of dengue viruses into new susceptible human populations throughout Asia and the Middle East, driven in part by human travel on both local and global scales, represents a significant global health risk, particularly in areas with changing climatic suitability for the mosquito vector. In Pakistan, dengue has been endemic for decades in the southern port city of Karachi, but large epidemics in the northeast have emerged only since 2011. Pakistan is therefore representative of many countries on the verge of countrywide endemic dengue transmission, where prevention, surveillance, and preparedness are key priorities in previously dengue-free regions. We analyze spatially explicit dengue case data from a large outbreak in Pakistan in 2013 and compare the dynamics of the epidemic to an epidemiological model of dengue virus transmission based on climate and mobility data from ∼40 million mobile phone subscribers. We find that mobile phone-based mobility estimates predict the geographic spread and timing of epidemics in both recently epidemic and emerging locations. We combine transmission suitability maps with estimates of seasonal dengue virus importation to generate fine-scale dynamic risk maps with direct application to dengue containment and epidemic preparedness.


Assuntos
Dengue/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Viagem , Telefone Celular , Dengue/transmissão , Humanos , Modelos Biológicos , Paquistão/epidemiologia , Densidade Demográfica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA