Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Recent Pat Nanotechnol ; 18(2): 179-189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38197417

RESUMO

One of the drug delivery technologies is nanostructured lipid carriers (NLCs), which improve drug permeability and thus bioavailability. NLCs are nanoparticles made from a lipid matrix made up of a mixture of solid and liquid lipids. The inclusion of liquid lipids is useful in lowering the ordered structure of solid lipids, increasing nanoparticle loading capacity, and drug entrapment efficiency within NLCs. Hot homogenization, cold homogenization, micro-emulsion, emulsification-solvent diffusion, high shear homogenization, and/or ultrasonication techniques, double emulsion technique, melting dispersion method, membrane contractor technique, and evaporation solvent injection are some of the methods that can be used to make NLCs. Both hydrophilic and lipophilic medicines can be carried out by NLCs. They can deliver medications in a variety of ways, including oral, topical, transdermal, parenteral, and ophthalmic. During the process of preparing this review article, several distinct studies and patent reports about various methods of NLCs formulations, their various therapeutic applications, and various routes of administration were investigated and discussed. The study conducts an in-depth evaluation of the most recent research publications and patents. NLCs have been utilized to treat a variety of disorders, including cancer, fungal infections, bacterial infections, inflammation, liver diseases, and ocular infections, due to their benefits. They can deliver medications to specific locations throughout the body, allowing for drug targeting and a reduction in unwanted side effects. They can also be used to improve bioavailability, reduce the medication's supplied dose, and improve the drug's pharmacological activity.


Assuntos
Sistemas de Liberação de Medicamentos , Lipídeos , Emulsões , Patentes como Assunto , Solventes
2.
Biomedicines ; 12(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255231

RESUMO

Chitosan succinate is distinguished by its ability to shield the loaded drug from the acidic environment, localize and keep the drug at the colon site, and release the drug over an extended time at basic pH. The current study attempts to develop polyelectrolyte liposomes (PEL), using chitosan and chitosan succinate (CSSC), as a carrier for liposomal-assisted colon target delivery of 5 fluorouracil (5FU). The central composite design was used to obtain an optimized formulation of 5FU-chitosomes. The chitosan-coated liposomes (chitosomes) were prepared by thin lipid film hydration technique. After that, the optimized formulation was coated with CSSC, which has several carboxylic (COOH) groups that produce an anionic charge that interacts with the cation NH2 in chitosan. The prepared 5FU-chitosomes formulations were evaluated for entrapment efficiency % (EE%), particle size, and in vitro drug release. The optimized 5FU-chitosomes formulation was examined for particle size, zeta potential, in vitro release, and mucoadhesive properties in comparison with the equivalent 5FU-liposomes and 5FU-PEL. The prepared 5FU-chitosomes exhibited high EE%, small particle size, low polydispersity index, and prolonged drug release. PEL significantly limited the drug release at acidic pH due to the deprotonation of carboxylate ions in CSSC, which resulted in strong repulsive forces, significant swelling, and prolonged drug release. According to a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, PEL treatment significantly decreased the viability of HT-29 cells. When compared to 5FU-liposome and 5FU-chitosome, the in vivo pharmacokinetics characteristics of 5FU-PEL significantly (p < 0.05) improved. The findings show that PEL enhances 5FU permeability, which permits high drug concentrations to enter cells and inhibits the growth of colon cancer cells. Based on the current research, PEL may be used as a liposomal-assisted colon-specific delivery.

3.
Front Pharmacol ; 14: 1293306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116076

RESUMO

Introduction: Parkinson's disease (PD) is a neurologic condition exhibiting motor dysfunction that affects old people. Marula oil (M-Oil) has been used longley in cosmetics and curing skin disorders. M-Oil is particularly stable due to its high concentration of monounsaturated fatty acids and natural antioxidants. The current study formulated M-Oil in an o/w nanoemulsion (M-NE) preparations and tested its anti-inflammatory and antioxidant actions against experimental parkinsonism. Methods: Four experimental groups of male albino mice were used and assigned as vehicle, PD, PD + M-Oil and PD + M-NE. Locomotor function was evaluated using the open field test and the cylinder test. Striatal samples were used to measure inflammatory and oxidative stress markers. Results: The results indicated poor motor performance of the mice in PD control group then, improvements were recorded after treatment with crude M-Oil or M-NE. In addition, we found high expression and protein of inflammatory markers and malondialdehyde levels in PD group which were downregulated by using doses of crude M-Oil or M-NE. Hence, formulating M-Oil in form of M-NE enhanced its physical characters. Discussion: This finding was supported by enhanced biological activity of M-NE as anti-inflammatory and antioxidant agent that resulted in downregulation of the inflammatory burden and alleviation of locomotor dysfunction in experimental PD in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA