Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-17, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458811

RESUMO

Previously, barosmin has been demonstrated to possess anti-diabetic action. However, its effect to inhibit α-amylase and α-glucosidase, including glucose utilization efficacy, has yet to be revealed. Hence, the current study attempted to assess the efficiency of barosmin in inhibiting the α-amylase, α -glucosidase, and dipeptidyl peptidase 4 enzymes, including glucose uptake efficacy. Molecular docking and simulation were performed using AutoDock Vina and Gromacs respectively followed by gene ontology analysis using the database for annotation, visualization, and integrated discovery. Further, in vitro enzyme inhibitory activities and glucose uptake assay were performed in L6 cell lines. Density functional theory analysis detailed mechanistic insights into the crucial interaction sites of barosmin of which the electron-dense region was prone to nucleophilic attack (O-atoms) whereas hydroxyl groups (-OH) showed affinity for electrophilic attacks. Barosmin showed good binding affinity with α-amylase (-9.2 kcal/mol), α-glucosidase (-10.7 kcal/mol), and dipeptidyl peptidase 4 (-10.0 kcal/mol). Barosmin formed stable nonbonded contacts with active site residues of aforementioned enzymes throughout 200 ns molecular dynamics simulation. Further, it regulated pathway concerned with glucose homeostasis i.e. tumor necrosis factor signaling pathway. In addition, barosmin showed α-amylase (IC50= 95.77 ± 23.33 µg/mL), α-glucosidase (IC50= 68.13 ± 2.95 µg/mL), and dipeptidyl peptidase 4 (IC50= 13.27 ± 1.99 µg/mL) inhibitory activities including glucose uptake efficacy in L6 cell lines (EC50= 12.46 ± 0.90 µg/mL) in the presence of insulin. This study presents the efficacy of the barosmin to inhibit α-amylase and α-glucosidase and glucose uptake efficacy in L6 cell lines via the use of multiple system biology tools and in vitro techniques.Communicated by Ramaswamy H. Sarma.

2.
Biosensors (Basel) ; 11(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34677328

RESUMO

IoT has played an essential role in many industries over the last few decades. Recent advancements in the healthcare industry have made it possible to make healthcare accessible to more people and improve their overall health. The next step in healthcare is to integrate it with IoT-assisted wearable sensor systems seamlessly. This review rigorously discusses the various IoT architectures, different methods of data processing, transfer, and computing paradigms. It compiles various communication technologies and the devices commonly used in IoT-assisted wearable sensor systems and deals with its various applications in healthcare and their advantages to the world. A comparative analysis of all the wearable technology in healthcare is also discussed with tabulation of various research and technology. This review also analyses all the problems commonly faced in IoT-assisted wearable sensor systems and the specific issues that need to be tackled to optimize these systems in healthcare and describes the various future implementations that can be made to the architecture and the technology to improve the healthcare industry.


Assuntos
Dispositivos Eletrônicos Vestíveis , Atenção à Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...