Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Energy Mater ; 7(9): 4076-4087, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38756864

RESUMO

The use of precious metal electrocatalysts in clean electrochemical energy conversion and storage applications is widespread, but the sustainability of these materials, in terms of their availability and cost, is constrained. In this research, iron triad-based bimetallic nitrogen-doped carbon (M-N-C) materials were investigated as potential bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The synthesis of bimetallic FeCo-N-C, CoNi-N-C, and FeNi-N-C catalysts involved a precisely optimized carbonization process of their respective metal-organic precursors. Comprehensive structural analysis was undertaken to elucidate the morphology of the prepared M-N-C materials, while their electrocatalytic performance was assessed through cyclic voltammetry and rotating disk electrode measurements in a 0.1 M KOH solution. All bimetallic catalyst materials demonstrated impressive bifunctional electrocatalytic performance in both the ORR and the OER. However, the FeNi-N-C catalyst proved notably more stable, particularly in the OER conditions. Employed as a bifunctional catalyst for ORR/OER within a customized zinc-air battery, FeNi-N-C exhibited a remarkable discharge-charge voltage gap of only 0.86 V, alongside a peak power density of 60 mW cm-2. The outstanding stability of FeNi-N-C, operational for about 55 h at 2 mA cm-2, highlights its robustness for prolonged application.

2.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364525

RESUMO

An original method was proposed to reduce the quenching of the NIR fluorescence of colloidal solutions of 0.1 at. % Nd3+: LaF3 nanoparticles (NPs) synthesized by aqueous co-precipitation method followed by hydrothermal microwave treatment. For this, an aqueous colloidal solution of NPs was precipitated by centrifugation and dissolved in the same volume of DMSO. The kinetics of static fluorescence quenching of Nd3+ donors of doped NPs dispersed in two solvents was analyzed to determine and to compare the concentrations of OH- quenching acceptors uniformly distributed throughout the volume of the NPs. The dependences of the relative fluorescence quantum yield φ of colloidal solutions on the concentration of OH- groups in the NPs were calculated and were also used to determine concentration of acceptors in the volume of NPs in different solvents. It was found that the concentration of OH- groups in NPs dispersed in DMSO is almost two times lower than in NPs dispersed in water. This gives an almost two-fold increase in the relative fluorescence quantum yield φ for the former. The sizes of synthesized NPs were monitored by common TEM and by applying a rapid procedure based on optical visualization of the trajectories of the Brownian motion of NPs in solution using a laser ultramicroscope. The use of two different methods made it possible to obtain more detailed information about the studied NPs.

3.
Nanomaterials (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34835612

RESUMO

Two series of stable aqueous colloidal solutions of Nd3+: LaF3 single-phase well-crystallized nanoparticles (NPs), possessing a fluorcerite structure with different activator concentrations in each series, were synthesized. A hydrothermal method involving microwave-assisted heating (HTMW) in two Berghof speedwave devices equipped with one magnetron (type I) or two magnetrons (type II) was used. The average sizes of NPs are 15.4 ± 6 nm (type I) and 21 ± 7 nm (type II). Both types of NPs have a size distribution that is well described by a double Gaussian function. The fluorescence kinetics of the 4F3/2 level of the Nd3+ ion for NPs of both types, in contrast to a similar bulk crystal, demonstrates a luminescence quenching associated not only with Nd-Nd self-quenching, but also with an additional Nd-OH quenching. A method has been developed for determining the spontaneous radiative lifetime of the excited state of a dopant ion, with the significant contribution of the luminescence quenching caused by the presence of the impurity OH- acceptors located in the bulk of NPs. The relative quantum yield of fluorescence and the fluorescence brightness of an aqueous colloidal solution of type II NPs with an optimal concentration of Nd3+ are only 2.5 times lower than those of analogous Nd3+: LaF3 single crystals.

4.
ACS Appl Mater Interfaces ; 13(35): 41507-41516, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428020

RESUMO

Non-precious-metal catalysts are promising alternatives for Pt-based cathode materials in low-temperature fuel cells, which is of great environmental importance. Here, we have investigated the bifunctional electrocatalytic activity toward the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) of mixed metal (FeNi; FeMn; FeCo) phthalocyanine-modified multiwalled carbon nanotubes (MWCNTs) prepared by a simple pyrolysis method. Among the bimetallic catalysts containing nitrogen derived from corresponding metal phthalocyanines, we report the excellent ORR activity of FeCoN-MWCNT and FeMnN-MWCNT catalysts with the ORR onset potential of 0.93 V and FeNiN-MWCNT catalyst for the OER having EOER = 1.58 V at 10 mA cm-2. The surface morphology, structure, and elemental composition of the prepared catalysts were examined with scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The FeCoN-MWCNT and FeMnN-MWCNT catalysts were prepared as cathodes and tested in anion-exchange membrane fuel cells (AEMFCs). Both catalysts displayed remarkable AEMFC performance with a peak power density as high as 692 mW cm-2 for FeCoN-MWCNT.

5.
RSC Adv ; 11(13): 7521-7526, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423279

RESUMO

Due to the several applications of biosensors, such as magnetic hyperthermia and magnetic resonance imaging, the use of superparamagnetic nanoparticles or thin films for preparing biosensors has increased greatly. We report herein on a strategy to fabricate a nanostructure composed of superparamagnetic thin films. Ruthenium-doped iron oxide thin films were deposited by using atomic layer deposition at 270 and 360 °C. FeCl3 and Ru(EtCp)2 were used as metal precursors and H2O/O2 as the oxygen precursor. Doping with ruthenium helps to lower the formation temperature of hematite (α-Fe2O3). Ruthenium content was changed from 0.42 at% up to 29.7 at%. Ru-doped films had a nano-crystallized structure of hematite with nanocrystal sizes from 4.4 up to 7.8 nm. Magnetization at room temperature was studied in iron oxide and Ru-doped iron oxide films. A new finding is a demonstration that in a Ru-doped iron oxide thin film superparamagnetic behavior of nanocrystalline materials (α-Fe2O3) is observed with the maximum magnetic coercive force H c of 3 kOe. Increasing Ru content increased crystallite size of hematite and resulted in a lower blocking temperature.

6.
Nanoscale Adv ; 3(8): 2261-2268, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133775

RESUMO

The oxygen reduction reaction (ORR) activity and stability of Pt catalysts deposited on graphene-coated alumina nanofibres (GCNFs) were investigated. The GCNFs were fabricated by catalyst-free chemical vapour deposition. Pt nanoparticles (NPs) were deposited on the nanofibres by sonoelectrochemical and plasma-assisted synthesis methods. Scanning and transmission electron microscopy analyses revealed different surface morphologies of the prepared Pt catalysts, depending on the synthesis procedure. Sonoelectrochemical deposition resulted in a uniform distribution of smaller Pt NPs on the support surface, while plasma-assisted synthesis, along with well-dispersed smaller Pt NPs, led to particle agglomeration at certain nucleation sites. Further details about the surface features were obtained from cyclic voltammetry and CO stripping experiments in 0.1 M HClO4 solution. Rotating disk electrode investigations revealed that the Pt/GCNF catalyst is more active towards the ORR in acid media than the commercial Pt/C (20 wt%). The prepared catalyst also showed significantly higher durability than commercial Pt/C, with no change in the half-wave potential after 10 000 potential cycles.

7.
J Colloid Interface Sci ; 584: 263-274, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069025

RESUMO

Highly active electrocatalysts for electrochemical oxygen reduction reaction (ORR) were prepared by high-temperature pyrolysis from 5-methylresorcinol, Co and/or Fe salts and dicyandiamide, which acts simultaneously as a precursor for reactive carbonitride template and a nitrogen source. The electrocatalytic activity of the catalysts for ORR in alkaline solution was studied using the rotating disc electrode (RDE) method. The bimetallic catalyst containing iron and cobalt (FeCoNC-at) showed excellent stability and remarkable ORR performance, comparable to that of commercial Pt/C (20 wt%). The superior activity was attributed to high surface metal and nitrogen contents. The FeCoNC-at catalyst was further tested in anion exchange membrane fuel cell (AEMFC) with poly-(hexamethyl-p-terphenylbenzimidazolium) (HMT-PMBI) membrane, where a high value of peak power density (Pmax = 415 mW cm-2) was achieved.

8.
Nanotechnology ; 32(3): 035401, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33002885

RESUMO

In this work He/H2 plasma jet treatment was used to reduce Pd ions in the aqueous solution with simultaneous deposition of created Pd nanoparticles to support materials. Graphene oxide (GO) and nitrogen-doped graphene oxide (NrGO) were both co-reduced with the Pd ions to formulate catalyst materials. Pd catalyst was also deposited on the surface of carbon black. The prepared catalyst materials were physically characterized using transmission electron microscopy, scanning electron microscopy and x-ray photoelectron spectroscopy. The plasma jet method yielded good dispersion of small Pd particles with average sizes of particles being: Pd/rGO 2.9 ± 0.6 nm, Pd/NrGO 2.3 ± 0.5 nm and Pd/Vulcan 2.8 ± 0.6 nm. The electrochemical oxygen reduction reaction (ORR) kinetics was explored using the rotating disk electrode method. Pd catalyst deposited on nitrogen-doped graphene material showed slightly improved ORR activity as compared to that on the nondoped substrate, however Vulcan carbon-supported Pd catalyst exhibited a higher specific activity for oxygen electroreduction.

9.
Colloids Surf B Biointerfaces ; 169: 222-232, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29778961

RESUMO

Application of efficient antimicrobial surfaces has been estimated to decrease both, the healthcare-associated infections and the spread of antibiotic-resistant bacteria. In this paper, we prepared ZnO and ZnO/Ag nanoparticle covered surfaces and evaluated their antimicrobial efficacy towards a Gram-negative bacterial model (Escherichia coli), a Gram-positive bacterial model (Staphylococcus aureus) and a fungal model (Candida albicans) in the dark and under UVA illumination. The surfaces were prepared by spin coating aliquots of ZnO and ZnO/Ag nanoparticle suspensions onto glass substrates. Surfaces contained 2 or 20 µg Zn/cm2 and 0-0.02 µg Ag/cm2. No significant antimicrobial activity of the surfaces, except of those with the highest Ag or Zn content was observed in the dark. On the other hand, UVA illuminated surfaces containing 20 µg Zn/cm2 and 2 µg Zn plus 0.02 µg Ag/cm2 caused >3 log decrease in the viable counts of E. coli and S. aureus in 30 min. As proven by brilliant blue FCF dye degradation and elemental analysis of the surfaces, this remarkable antimicrobial activity was a combined result of photocatalytic effect and release of Zn and Ag ions from surfaces. Surfaces retained significant antibacterial and photocatalytic properties after several usage cycles. Compared to bacteria, yeast C. albicans was significantly less sensitive to the prepared surfaces and only about 1 log reduction of viable count was observed after 60 min UVA illumination. In conclusion, the developed ZnO/Ag surfaces exhibit not only high antibacterial activity but also some antifungal activity.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Nanocompostos/química , Prata/farmacologia , Raios Ultravioleta , Óxido de Zinco/farmacologia , Antibacterianos/química , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Óxido de Zinco/química
10.
Beilstein J Nanotechnol ; 9: 119-128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441257

RESUMO

Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...