Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(9): e0161965, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27627128

RESUMO

Salmonella Typhimurium (S. Tm) is a leading cause of diarrhea. The disease is triggered by pathogen invasion into the gut epithelium. Invasion is attributed to the SPI-1 type 3 secretion system (T1). T1 injects effector proteins into epithelial cells and thereby elicits rearrangements of the host cellular actin cytoskeleton and pathogen invasion. The T1 effector proteins SopE, SopB, SopE2 and SipA are contributing to this. However, the host cell factors contributing to invasion are still not completely understood. To address this question comprehensively, we used Hela tissue culture cells, a genome-wide siRNA library, a modified gentamicin protection assay and S. TmSipA, a sopBsopE2sopE mutant which strongly relies on the T1 effector protein SipA to invade host cells. We found that S. TmSipA invasion does not elicit membrane ruffles, nor promote the entry of non-invasive bacteria "in trans". However, SipA-mediated infection involved the SPIRE family of actin nucleators, besides well-established host cell factors (WRC, ARP2/3, RhoGTPases, COPI). Stage-specific follow-up assays and knockout fibroblasts indicated that SPIRE1 and SPIRE2 are involved in different steps of the S. Tm infection process. Whereas SPIRE1 interferes with bacterial binding, SPIRE2 influences intracellular replication of S. Tm. Hence, these two proteins might fulfill non-redundant functions in the pathogen-host interaction. The lack of co-localization hints to a short, direct interaction between S. Tm and SPIRE proteins or to an indirect effect.


Assuntos
Proteínas de Bactérias/fisiologia , Estudo de Associação Genômica Ampla/métodos , Interações Hospedeiro-Patógeno/fisiologia , Proteínas dos Microfilamentos/fisiologia , Proteínas Nucleares/fisiologia , Salmonella typhimurium/patogenicidade , Animais , Linhagem Celular , Imunofluorescência , Células HeLa/metabolismo , Células HeLa/microbiologia , Humanos , Camundongos , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Salmonella typhimurium/fisiologia
2.
Cell Host Microbe ; 18(5): 527-37, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26567507

RESUMO

Salmonella Typhimurium (S.Tm) is an enteropathogen requiring multiple virulence factors, including two type three secretion systems (T1 and T2). T1 triggers epithelium invasion in which the bacteria are taken up into endosomes that mature into Salmonella-containing vacuoles (SCV) and trigger T2 induction upon acidification. Mechanisms controlling endosome membrane integrity or pathogen egress into the cytosol are incompletely understood. We screened for host factors affecting invasion and SCV maturation and identified a role for autophagy in sealing endosomal membranes damaged by T1 during host cell invasion. S.Tm-infected autophagy-deficient (atg5(-/-)) cells exhibit reduced SCV dye retention and lower T2 expression but no effects on steps preceding SCV maturation. However, in the absence of T1, autophagy is dispensable for T2 induction. These findings establish a role of autophagy at early stages of S.Tm infection and suggest that autophagy-mediated membrane repair might be generally important for invasive pathogens and endosomal membrane function.


Assuntos
Endossomos/patologia , Membranas/patologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/patogenicidade , Sistemas de Secreção Tipo III , Fatores de Virulência/metabolismo , Animais , Autofagia , Linhagem Celular , Humanos , Camundongos , Infecções por Salmonella/patologia , Salmonella typhimurium/metabolismo
4.
Genome Biol ; 16: 220, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26445817

RESUMO

Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled, from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes. Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components of pathogen entry mechanisms and TGF-ß signaling. gespeR is available as a Bioconductor R-package.


Assuntos
Técnicas de Silenciamento de Genes , Modelos Estatísticos , Interferência de RNA , Software , Bartonella henselae/genética , Brucella abortus/genética , Células HeLa , Humanos , Fenótipo , RNA Interferente Pequeno , Salmonella typhimurium/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/fisiologia
5.
mBio ; 6(3): e00598-15, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25991686

RESUMO

UNLABELLED: Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. IMPORTANCE: Listeria is a bacterial pathogen that induces its internalization within the cytoplasm of human cells and has been used for decades as a major molecular tool to manipulate cells in order to explore and discover cellular functions. We have inactivated individually, for the first time in epithelial cells, all the genes of the human genome to investigate whether each gene modifies positively or negatively the Listeria infectious process. We identified novel signaling cascades that have never been associated with Listeria infection. We have also revisited the role of the molecular complex Arp2/3 involved in the polymerization of the actin cytoskeleton, which was shown previously to be required for Listeria entry and movement inside host cells, and we demonstrate that contrary to the general dogma, some subunits of the complex are dispensable for both Listeria entry and bacterial movement.


Assuntos
Actinas/metabolismo , Endocitose , Interações Hospedeiro-Patógeno , Listeria monocytogenes/fisiologia , Transdução de Sinais , Células Epiteliais/microbiologia , Inativação Gênica , Testes Genéticos , Células HeLa , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
PLoS Comput Biol ; 11(4): e1004078, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25879530

RESUMO

Nested effects models have been used successfully for learning subcellular networks from high-dimensional perturbation effects that result from RNA interference (RNAi) experiments. Here, we further develop the basic nested effects model using high-content single-cell imaging data from RNAi screens of cultured cells infected with human rhinovirus. RNAi screens with single-cell readouts are becoming increasingly common, and they often reveal high cell-to-cell variation. As a consequence of this cellular heterogeneity, knock-downs result in variable effects among cells and lead to weak average phenotypes on the cell population level. To address this confounding factor in network inference, we explicitly model the stimulation status of a signaling pathway in individual cells. We extend the framework of nested effects models to probabilistic combinatorial knock-downs and propose NEMix, a nested effects mixture model that accounts for unobserved pathway activation. We analyzed the identifiability of NEMix and developed a parameter inference scheme based on the Expectation Maximization algorithm. In an extensive simulation study, we show that NEMix improves learning of pathway structures over classical NEMs significantly in the presence of hidden pathway stimulation. We applied our model to single-cell imaging data from RNAi screens monitoring human rhinovirus infection, where limited infection efficiency of the assay results in uncertain pathway stimulation. Using a subset of genes with known interactions, we show that the inferred NEMix network has high accuracy and outperforms the classical nested effects model without hidden pathway activity. NEMix is implemented as part of the R/Bioconductor package 'nem' and available at www.cbg.ethz.ch/software/NEMix.


Assuntos
Algoritmos , Simulação por Computador , Modelos Biológicos , Modelos Estatísticos , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Funções Verossimilhança , Software
7.
BMC Genomics ; 15: 1162, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25534632

RESUMO

BACKGROUND: Large-scale RNAi screening has become an important technology for identifying genes involved in biological processes of interest. However, the quality of large-scale RNAi screening is often deteriorated by off-targets effects. In order to find statistically significant effector genes for pathogen entry, we systematically analyzed entry pathways in human host cells for eight pathogens using image-based kinome-wide siRNA screens with siRNAs from three vendors. We propose a Parallel Mixed Model (PMM) approach that simultaneously analyzes several non-identical screens performed with the same RNAi libraries. RESULTS: We show that PMM gains statistical power for hit detection due to parallel screening. PMM allows incorporating siRNA weights that can be assigned according to available information on RNAi quality. Moreover, PMM is able to estimate a sharedness score that can be used to focus follow-up efforts on generic or specific gene regulators. By fitting a PMM model to our data, we found several novel hit genes for most of the pathogens studied. CONCLUSIONS: Our results show parallel RNAi screening can improve the results of individual screens. This is currently particularly interesting when large-scale parallel datasets are becoming more and more publicly available. Our comprehensive siRNA dataset provides a public, freely available resource for further statistical and biological analyses in the high-content, high-throughput siRNA screening field.


Assuntos
Genômica/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Linhagem Celular , Biblioteca Gênica , Genômica/normas , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Curva ROC , Reprodutibilidade dos Testes
8.
Proc Natl Acad Sci U S A ; 111(12): 4548-53, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24616511

RESUMO

Systematic genetic perturbation screening in human cells remains technically challenging. Typically, large libraries of chemically synthesized siRNA oligonucleotides are used, each designed to degrade a specific cellular mRNA via the RNA interference (RNAi) mechanism. Here, we report on data from three genome-wide siRNA screens, conducted to uncover host factors required for infection of human cells by two bacterial and one viral pathogen. We find that the majority of phenotypic effects of siRNAs are unrelated to the intended "on-target" mechanism, defined by full complementarity of the 21-nt siRNA sequence to a target mRNA. Instead, phenotypes are largely dictated by "off-target" effects resulting from partial complementarity of siRNAs to multiple mRNAs via the "seed" region (i.e., nucleotides 2-8), reminiscent of the way specificity is determined for endogenous microRNAs. Quantitative analysis enabled the prediction of seeds that strongly and specifically block infection, independent of the intended on-target effect. This prediction was confirmed experimentally by designing oligos that do not have any on-target sequence match at all, yet can strongly reproduce the predicted phenotypes. Our results suggest that published RNAi screens have primarily, and unintentionally, screened the sequence space of microRNA seeds instead of the intended on-target space of protein-coding genes. This helps to explain why previously published RNAi screens have exhibited relatively little overlap. Our analysis suggests a possible way of identifying "seed reagents" for controlling phenotypes of interest and establishes a general strategy for extracting valuable untapped information from past and future RNAi screens.


Assuntos
Brucella abortus/efeitos dos fármacos , Bunyaviridae/efeitos dos fármacos , MicroRNAs/genética , Oligonucleotídeos/farmacologia , Interferência de RNA , Salmonella typhimurium/efeitos dos fármacos , Sequência de Bases , Brucella abortus/genética , Bunyaviridae/genética , Genes Bacterianos , Células HeLa , Humanos , RNA Interferente Pequeno/genética , Salmonella typhimurium/genética
9.
BMC Bioinformatics ; 14 Suppl 10: S6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24267488

RESUMO

BACKGROUND: High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery, demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example, cell classification, cell tracking etc., often relies on the results of segmentation. METHODS: We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-space representation. A novel outline-learning based classification method is developed using regularized logistic regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing step where the nuclei segmentation is used as contextual information. RESULTS AND CONCLUSIONS: We evaluate the proposed segmentation methodology using two challenging test cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and degrees of overlap. The feature selection and classification framework for outline detection produces very simple sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces accurate segmentation but also generalizes well to different segmentation tasks.


Assuntos
Divisão Celular/fisiologia , Ensaios de Triagem em Larga Escala , Algoritmos , Animais , Células Cultivadas , Citoplasma/fisiologia , Drosophila melanogaster/citologia , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , Aumento da Imagem/métodos , Microscopia de Fluorescência , Distribuição Normal , Processamento de Proteína Pós-Traducional/fisiologia , Distribuição Aleatória
10.
Mol Syst Biol ; 8: 579, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22531119

RESUMO

Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensive computational approach that employs Bayesian and multivariate methods at the single-cell level. We applied these methods to 45 RNA interference screens of various sizes, including 7 druggable genome and 2 genome-wide screens, analysing 17 different mammalian virus infections and four related cell physiological processes. Analysing cell-based screens at this depth reveals widespread RNAi-induced changes in the population context of individual cells leading to indirect RNAi effects, as well as perturbations of cell-to-cell variability regulators. We find that accounting for indirect effects improves the consistency between siRNAs targeted against the same gene, and between replicate RNAi screens performed in different cell lines, in different labs, and with different siRNA libraries. In an era where large-scale RNAi screens are increasingly performed to reach a systems-level understanding of cellular processes, we show that this is often improved by analyses that account for and incorporate the single-cell microenvironment.


Assuntos
Interferência de RNA , Análise de Célula Única/métodos , Viroses/genética , Teorema de Bayes , Microambiente Celular , Simulação por Computador , Genômica/métodos , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Biológicos , RNA Interferente Pequeno , RNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , Biologia de Sistemas/métodos , Proteínas Virais/genética , Proteínas Virais/isolamento & purificação , Viroses/metabolismo , Vírus/isolamento & purificação , Vírus/patogenicidade
11.
Bioinformatics ; 25(22): 3028-30, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19729371

RESUMO

UNLABELLED: CellClassifier is a tool for classifying single-cell phenotypes in microscope images. It includes several unique and user-friendly features for classification using multiclass support vector machines AVAILABILITY: Source code, user manual and SaveObjectSegmentation CellProfiler module available for download at www.cellclassifier.ethz.ch under the GPL license (implemented in Matlab).


Assuntos
Biologia Computacional/métodos , Fenótipo , Software , Internet , Proteoma
12.
Nature ; 461(7263): 520-3, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19710653

RESUMO

Single-cell heterogeneity in cell populations arises from a combination of intrinsic and extrinsic factors. This heterogeneity has been measured for gene transcription, phosphorylation, cell morphology and drug perturbations, and used to explain various aspects of cellular physiology. In all cases, however, the causes of heterogeneity were not studied. Here we analyse, for the first time, the heterogeneous patterns of related cellular activities, namely virus infection, endocytosis and membrane lipid composition in adherent human cells. We reveal correlations with specific cellular states that are defined by the population context of a cell, and we derive probabilistic models that can explain and predict most cellular heterogeneity of these activities, solely on the basis of each cell's population context. We find that accounting for population-determined heterogeneity is essential for interpreting differences between the activity levels of cell populations. Finally, we reveal that synergy between two molecular components, focal adhesion kinase and the sphingolipid GM1, enhances the population-determined pattern of simian virus 40 (SV40) infection. Our findings provide an explanation for the origin of heterogeneity patterns of cellular activities in adherent cell populations.


Assuntos
Células Clonais/patologia , Endocitose , Viroses/patologia , Adesão Celular , Contagem de Células , Linhagem Celular Tumoral , Tamanho Celular , Células Clonais/virologia , Vírus da Dengue/fisiologia , Quinase 1 de Adesão Focal/metabolismo , Gangliosídeo G(M1)/metabolismo , Humanos , Lipídeos de Membrana/análise , Lipídeos de Membrana/metabolismo , Vírus da Hepatite Murina/fisiologia , Rotavirus/fisiologia , Vírus 40 dos Símios/fisiologia , Viroses/virologia
13.
Annu Rev Cell Dev Biol ; 24: 501-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18598215

RESUMO

The field of endocytosis is in strong need of formal biophysical modeling and mathematical analysis. At the same time, endocytosis must be much better integrated into cellular physiology to understand the former's complex behavior in such a wide range of phenotypic variations. Furthermore, the concept that endocytosis provides the space-time for signal transduction can now be experimentally addressed. In this review, we discuss these principles and argue for a systematic and top-down approach to study the endocytic membrane system. We provide a summary of published observations on protein kinases regulating endocytic machinery components and discuss global unbiased approaches to further map out kinase regulatory networks. In particular, protein phosphorylation is at the heart of controlling the physical properties of endocytosis and of integrating these physical properties into the signal transduction networks of the cell to allow a fine-tuned response to the continuously varying physiological conditions of a cell.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Proteínas Quinases/metabolismo , Animais , Humanos , Membranas Intracelulares/metabolismo , Fosforilação , Filogenia , Mapeamento de Interação de Proteínas , Proteínas Quinases/química , Proteínas Quinases/classificação , Proteínas Quinases/genética , Transdução de Sinais/fisiologia
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(4 Pt 2): 046104, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17155130

RESUMO

Boolean networks are used to study the large-scale properties of nonlinear systems and are mainly applied to model genetic regulatory networks. A statistical method called the annealed approximation is commonly used to examine the dynamical properties of randomly generated Boolean networks that are created with selected statistical features. However, in the literature there are several variations of the annealed approximation. These approximations cannot be interchangeably used in all cases due to different background assumptions. In this paper, we present the so-called four-state model, derive the different approximations from this model, and make the differences and connections between these approximations explicit. As an application of the presented results, we study the properties of the Boolean networks that are constructed with random functions, canalizing functions, and regulatory functions found in the biological literature.

15.
Chaos ; 15(3): 34101, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16252995

RESUMO

Boolean networks are used to model large nonlinear systems such as gene regulatory networks. We will present results that can be used to understand how the choice of functions affects the network dynamics. The so called bias-map and its fixed points depict much of the function's dynamical role in the network. We define the concept of stabilizing functions and show that many Post and canalizing functions are also stabilizing functions. Boolean networks constructed using the same type of stabilizing functions are always stable regardless of the average in-degree of network functions. We derive the number of all stabilizing functions and find it to be much larger than the number of Post and canalizing functions. We also discuss the implementation of functions and apply the presented results to biological data that give an approximation of the distribution of regulatory functions in eucaryotic cells. We find that the obtained theoretical results on the number of active genes are biologically plausible. Finally, based on the presented results, we discuss why canalizing and Post regulatory functions seem to be common in cells.


Assuntos
Adaptação Fisiológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Modelos Biológicos , Dinâmica não Linear , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Animais , Relógios Biológicos/fisiologia , Simulação por Computador , Humanos
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(2 Pt 2): 026137, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16196674

RESUMO

In this paper we present a method for predicting the spread of perturbations in Boolean networks. The method is applicable to networks that have no regular topology. The prediction of perturbations can be performed easily by using a presented result which enables the efficient computation of the required iterative formulas. This result is based on abstract Fourier transform of the functions in the network. In this paper the method is applied to show the spread of perturbations in networks containing a distribution of functions found from biological data. The advances in the study of the spread of perturbations can directly be applied to enable ways of quantifying chaos in Boolean networks. Derrida plots over an arbitrary number of time steps can be computed and thus distributions of functions compared with each other with respect to the amount of order they create in random networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...