Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 52(5): 1391-1399, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30964643

RESUMO

Chemical damage to DNA is a key initiator of adverse biological consequences due to disruption of the faithful reading of the genetic code. For example, O6-alkylguanine ( O6-alkylG) DNA adducts are strongly miscoding during DNA replication when the damaged nucleobase is a template for polymerase-mediated translesion DNA synthesis. Thus, mutations derived from O6-alkylG adducts can have severe adverse effects on protein translation and function and are an early event in the initiation of carcinogenesis. However, the low abundance of these adducts places significant limitations on our ability to relate their presence and biological influences with resultant mutations or disease risk. As a consequence, there is a critical need for novel tools to detect and study the biological role of alkylation adducts. Incorporating DNA bases with altered structures that are derived synthetically is a strategy that has been used widely to interrogate biological processes involving DNA. Such synthetic nucleosides have contributed to our understanding of DNA structure, DNA polymerase (Pol) and repair enzyme function, and to the expansion of the genetic alphabet. This Account describes our efforts toward creating and applying synthetic nucleosides directed at DNA adducts. We synthesized a variety of nucleosides with altered base structures that complement the altered hydrogen bonding capacity and hydrophilicity of O6-alkylG adducts. The heterocyclic perimidinone-derived nucleoside Per was the first of such adduct-directed synthetic nucleosides; it specifically stabilized O6-benzylguanine ( O6-BnG) in a DNA duplex. Structural variants of Per were used to determine hydrogen bonding and base-stacking contributions to DNA duplex stability in templates containing O6-BnG as well as O6-methylguanine ( O6-MeG) adducts. We created synthetic probes able to stabilize damaged over undamaged templates and established how altered hydrogen bonding or base-stacking properties impact DNA duplex stability as a function of adduct structures. This knowledge was then applied to devise a hybridization-based detection strategy involving gold nanoparticles that distinguish damaged from undamaged DNA by colorimetric changes. Furthermore, synthetic nucleosides were used as mechanistic tools to understand chemical determinants such as hydrogen bonding, π-stacking, and size and shape deviations that impact the efficiency and fidelity of DNA adduct bypass by DNA Pols. Finally, we reported the first example of amplifying alkylated DNA, accomplished by combining an engineered polymerase and synthetic triphosphate for which incorporation is templated by a DNA adduct. The presence of the synthetic nucleoside in amplicons could serve as a marker for the presence and location of DNA damage at low levels in DNA strands. Adduct-directed synthetic nucleosides have opened new concepts to interrogate the levels, locations, and biological influences of DNA alkylation.


Assuntos
Adutos de DNA/genética , Nucleosídeos/genética , Pareamento de Bases , Adutos de DNA/química , Dano ao DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Ouro/química , Humanos , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Nucleosídeos/química
2.
ACS Chem Biol ; 14(2): 214-222, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30645109

RESUMO

Carboxymethylation of DNA, including the formation of the DNA adduct O6-carboxymethylguanine ( O6-CMG), is associated with lifestyle factors, such as diet. It can impede replicative polymerases (Pols) and lead to replication fork stalling, or an alternative means for replication to proceed by translesion DNA synthesis (TLS). TLS requires specialized DNA Pols characterized by open and preformed active sites capable of preferential bypass of alkylated DNA adducts but that have high error rates, leading to mutations. Human TLS Pols can bypass O6-CMG with varying degrees of accuracy, but it is not known how the chemical structure of the O6-CMG adduct influences polymerase proficiency or fidelity. To better understand how adduct structure determines dNTP selection at lesion sites, we prepared DNA templates with a series of O6-CMG structural analogs and compared the primer extension patterns of Y- and X-family Pols in response to these modifications. The results indicate that the structure of the DNA adduct had a striking effect on dNTP selection by Pol κ and that an increased steric size influences the fidelity of Pol η, whereas Pol ι and ß function were only marginally affected. To test the hypothesis that specific hydrogen bonding interactions between the templating base and the incoming dNTP are a basis of this selection, we modeled the structural analogs with incoming dNTP in the Pol κ active site. These data indicate that the base pairing geometry and stabilization by a dense hydrogen bonding network are important molecular features for dNTP incorporation, providing a basis for understanding error-free bypass of O6-CMG by Pol κ.


Assuntos
Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/análogos & derivados , Adutos de DNA/metabolismo , Guanina/química , Guanina/metabolismo , Humanos , Cinética
3.
Biochemistry ; 57(41): 5978-5988, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30222325

RESUMO

Chemically induced DNA lesions can become DNA replication substrates that are bypassed by low-fidelity DNA polymerases. Following nucleotide misinsertion opposite a DNA lesion, the extension step can contribute to preserving such errors and lead to genomic instability and cancer. DNA polymerase ζ, a B-family polymerase, is proficient as an extender polymerase that catalyzes elongation; however, the chemical factors that impact its DNA replication are not understood. This study addresses the question of how DNA polymerase ζ achieves extension by examining the ability of recombinant human DNA polymerase ζ to extend from a series of methylated guanine lesions. The influence of H-bonding was examined by placing structurally altered nucleoside analogues and canonical bases opposite G, O6-MeG, N1-MeG, and N2-MeG. We determined that terminal base pairs with the highest proclivity for H-bonding were most efficiently extended in both primer extension assays and steady-state kinetic analysis. In contrast, when no H-bonding was possible at the DNA terminus, the least efficient steady-state kinetics were observed. To evaluate H-bonding protein minor groove interactions that may underlie this phenomenon, we performed computational modeling with Escherichia coli DNA polymerase II, a homologue for DNA polymerase ζ. The modeling data together with the primer extension assays demonstrate the importance of having a carbonyl group on the primer strand that can interact with a lysine residue found to be conserved in many B-family polymerases, including human Pol ζ. These data provide a model whereby interbase H-bonding interactions at the DNA terminus promote lesion bypass and extension by human DNA polymerase ζ.


Assuntos
Simulação por Computador , Reparo do DNA , DNA/química , Metilguanidina/química , Modelos Químicos , DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Metilguanidina/metabolismo
4.
ACS Chem Biol ; 13(9): 2534-2541, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30040894

RESUMO

O6-Alkylguanine DNA adducts are repaired by the suicide enzyme alkylguanine alkyltransferase (AGT). AGT facilitates repair by binding DNA in the minor groove, flipping out the damaged base, and transferring the O6-alkyl group to a cysteine residue in the enzyme's active site. Despite there being significant knowledge concerning the mechanism of AGT repair, there is limited insight regarding how altered interactions of the adduct with its complementary base in the DNA duplex influence its recognition and repair. In this study, the relationship of base pairing interactions and repair by human AGT (hAGT) was tested in the frequently mutated codon 12 of the KRAS gene with complementary sequences containing each canonical DNA base. The rate of O6-MeG repair decreased 2-fold when O6-MeG was paired with G, whereas all other canonical bases had no impact on the repair rate. We used a combination of biochemical studies, molecular modeling, and artificial nucleobases to elucidate the mechanism accounting for the 2-fold decrease. Our results suggest that the reduced rate of repair is due to O6-MeG adopting a syn conformation about the glycosidic bond precluding the formation of a repair-active complex. These data provide a novel chemical basis for how direct reversion repair may be impeded through modification of the base pair partner and support the use of artificial nucleobases as tools to probe the biochemistry of damage repair processes.


Assuntos
Códon/genética , Adutos de DNA/metabolismo , Reparo do DNA , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Pareamento de Bases , Códon/metabolismo , Adutos de DNA/genética , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Modelos Moleculares , Mutação , Termodinâmica
5.
J Am Chem Soc ; 138(42): 13842-13845, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27709924

RESUMO

To examine the effect of the torsional constraints imposed on DNA substrates on Cas9 cleavage, we prepared constrained DNA substrates using a DNA origami frame. By fixing the dsDNA at the connectors of the DNA frame, we created torsionally constrained or relaxed substrates. We quantified the cleavage of constrained and relaxed substrates by Cas9 with qPCR. Moreover, we observed the Cas9/sgRNA complex bound to the DNA substrates and characterized the dissociation of the complex with high-speed atomic force microscopy. The results revealed that the constrained nontarget strand reduced the cleavage efficiency of Cas9 drastically, whereas torsional constraints on the target strand had little effect on the cleavage. The present study suggests that highly ordered and constrained DNA structures could be obstacles for Cas9 and additionally provides insights in Cas9 dissociation at a single molecule level.

6.
Chem Res Toxicol ; 29(9): 1493-503, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27404553

RESUMO

The generation of chemical alkylating agents from nitrosation of glycine and bile acid conjugates in the gastrointestinal tract is hypothesized to initiate carcinogenesis. O(6)-carboxymethylguanine (O(6)-CMG) is a product of DNA alkylation derived from nitrosated glycine. Although the tendency of the structurally related adduct O(6)-methylguanine to code for the misincoporation of TTP during DNA replication is well-established, the impact of the presence of the O(6)-CMG adduct in a DNA template on the efficiency and fidelity of translesion DNA synthesis (TLS) by human DNA polymerases (Pols) has hitherto not been described. Herein, we characterize the ability of the four human TLS Pols η, ι, κ, and ζ and the replicative Pol δ to bypass O(6)-CMG in a prevalent mutational hot-spot for colon cancer. The results indicate that Pol η replicates past O(6)-CMG, incorporating dCMP or dAMP, whereas Pol κ incorporates dCMP only, and Pol ι incorporates primarily dTMP. Additionally, the subsequent extension step was carried out with high efficiency by TLS Pols η, κ, and ζ, while Pol ι was unable to extend from a terminal mismatch. These results provide a first basis of O(6)-CMG-promoted base misincorporation by Y- and B-family polymerases potentially leading to mutational signatures associated with colon cancer.


Assuntos
Adutos de DNA/química , Adutos de DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Guanina/análogos & derivados , Guanina/química , Adutos de DNA/toxicidade , DNA Polimerase Dirigida por DNA/química , Guanina/toxicidade , Humanos , Mutagênicos/química , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Mutação , Nitrosação , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Mol Biosyst ; 11(5): 1454-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25854917

RESUMO

DNAzymes (Dz) 8-17 and 10-23 are two widely studied and well-characterized RNA-cleaving DNA catalysts. In an effort to further improve the understanding of the fragile interactions and dynamics of the enzymatic mechanism, this study examines the catalytic efficiency of minimally modified DNAzymes. Five single mutants of Dz8-17 and Dz10-23 were prepared by replacing the adenine residues in the corresponding catalytic cores with 3-deazaadenine units. Kinetic assays were used to assess the effect on the catalytic activity and thereby identify the importance of hydrogen bonding that arises from the N3 atoms. The results suggest that modifications at A15 and A15.0 of Dz8-17 have a significant influence and show a reduction in catalytic activity. Modification at each location in Dz10-23 results in a decrease of the observed rate constants, with A12 appearing to be the most affected with a reduction of ∼80% of kobs and ∼25% of the maximal cleavage rate compared to the wild-type DNAzyme. On the other hand, modification of A12 in Dz8-17 showed an ∼130% increase in kobs, thus unraveling a new potential site for the introduction of chemical modifications. A pH-profile analysis showed that the chemical cleavage step is rate-determining, regardless of the presence and/or location of the mutation. These findings point towards the importance of the N3-nitrogens of certain adenine nucleotides located within the catalytic cores of the DNAzymes for efficient catalytic activity and further suggest that they might directly partake in maintaining the appropriate tertiary structure. Therefore, it appears that minor groove interactions constitute an important feature of DNAzymes as well as ribozymes.


Assuntos
DNA Catalítico/química , DNA Catalítico/metabolismo , Sequência de Bases , Catálise , Concentração de Íons de Hidrogênio , Cinética , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...