Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(10): 103145, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34723162

RESUMO

Thermoelectric materials convert waste heat into electric energy. Oxyselenide-based material, specifically, p-type BiCuSeO, is one of the most promising materials for these applications. There are numerous approaches to improve the heat-to-electricity conversion performance. Usually, these approaches are applied individually, starting from the pure intrinsic material. Higher performance could, however, be reached by combining a few strategies simultaneously. In the current work, yttrium, niobium, and phosphorous substitutions on the bismuth sites in already bismuth-deficient Bi1-xCuSeO systems were investigated via density functional theory. The bismuth-deficient system was used as the reference system for further introduction of substitutional defects. The substitution with phosphorous showed a decrease of up to 40 meV (11%) in the energy gap between conduction and valence bands at the highest substitution concentration. Doping with niobium led to the system changing from a p-type to an n-type conductor, which provides a possible route to obtain n-type BiCuSeO systems.

2.
Nanomaterials (Basel) ; 10(5)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354142

RESUMO

Reduced energy consumption and environmentally friendly, abundant constituents are gaining more attention for the synthesis of energy materials. A rapid, highly scalable, and process-temperature-sensitive solution synthesis route is demonstrated for the fabrication of thermoelectric Cu2-xSe. The process relies on readily available precursors and microwave-assisted thermolysis, which is sensitive to reaction conditions; yielding Cu1.8Se at 200 °C and Cu2Se at 250 °C within 6-8 min reaction time. Transmission electron microscopy (TEM) revealed crystalline nature of as-made particles with irregular truncated morphology, which exhibit a high phase purity as identified by X-ray powder diffraction (XRPD) analysis. Temperature-dependent transport properties were characterized via electrical conductivity, Seebeck coefficient, and thermal diffusivity measurements. Subsequent to spark plasma sintering, pure Cu1.8Se exhibited highly compacted and oriented grains that were similar in size in comparison to Cu2Se, which led to its high electrical and low thermal conductivity, reaching a very high power-factor (24 µW/K-2cm-1). Density-of-states (DOS) calculations confirm the observed trends in electronic properties of the material, where Cu-deficient phase exhibits metallic character. The TE figure of merit (ZT) was estimated for the materials, demonstrating an unprecedentedly high ZT at 875 K of 2.1 for Cu1.8Se sample, followed by 1.9 for Cu2Se. Synthetic and processing methods presented in this work enable large-scale production of TE materials and components for niche applications.

3.
J Phys Condens Matter ; 30(1): 015702, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29120870

RESUMO

It is well established that TiC contains carbon vacancies not only in carbon-deficient environments but also in carbon-rich environments. We have performed density functional calculations of the vacancy formation energy in TiC for C- as well as Ti-rich conditions using several different approximations to the exchange-correlation functional, and also carefully considering the nature and thermodynamics of the carbon reference state, as well as the effect of varying growth conditions. We find that the formation of carbon vacancies is clearly favorable under Ti-rich conditions, whereas it is slightly energetically unfavorable under C-rich conditions. Furthermore, we find that the relaxations of the atoms close to the vacancy site are rather long-ranged, and that these relaxations contribute significantly to the stabilization of the vacancy. Since carbon vacancies in TiC are also experimentally observed in carbon-rich environments, we conclude that kinetics may play an important role. This conclusion is consistent with the experimentally observed high activation energies and sluggish diffusion of vacancies in TiC, effectively causing a freezing in of the vacancies.

4.
Sci Rep ; 6: 31230, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503808

RESUMO

Epitaxial transparent oxide NixMg1-xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1-xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1-xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1-xO solid solution system.

5.
Nanoscale ; 7(45): 19099-109, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26523705

RESUMO

We demonstrate humidity sensing using a change of the electrical resistance of single-layer chemical vapor deposited (CVD) graphene that is placed on top of a SiO2 layer on a Si wafer. To investigate the selectivity of the sensor towards the most common constituents in air, its signal response was characterized individually for water vapor (H2O), nitrogen (N2), oxygen (O2), and argon (Ar). In order to assess the humidity sensing effect for a range from 1% relative humidity (RH) to 96% RH, the devices were characterized both in a vacuum chamber and in a humidity chamber at atmospheric pressure. The measured response and recovery times of the graphene humidity sensors are on the order of several hundred milliseconds. Density functional theory simulations are employed to further investigate the sensitivity of the graphene devices towards water vapor. The interaction between the electrostatic dipole moment of the water and the impurity bands in the SiO2 substrate leads to electrostatic doping of the graphene layer. The proposed graphene sensor provides rapid response direct electrical readout and is compatible with back end of the line (BEOL) integration on top of CMOS-based integrated circuits.

6.
J Phys Condens Matter ; 25(12): 125503, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23448862

RESUMO

We have investigated the electronic structure of fluorite Cu2Se using density functional theory calculations within the LDA, PBE and AM05 approximations as well as the non-local hybrid PBE0 and HSE approximations. We find that Cu2Se is a zero gap semiconductor when using either a local or semi-local density functional approximation while the PBE0 functional opens up a gap. For the HSE approximation, we find that the presence of a gap depends on the range separation for the non-local exchange. For the occupied part in the density of states we find that LDA, PBE, AM05, PBE0 and HSE agree with regard to the overall electronic structure. However, the hybrid functionals result in peaks shifted towards lower energy compared to LDA, PBE and AM05. The valence bands obtained using the hybrid functionals are in good agreement with experimental valence band spectra. We also find that the PBE, PBE0 and HSE approximations give similar results regarding bulk properties, such as lattice constants and bulk modulus. In addition, we have investigated the localization of the Cu d-states and its effect on the band gap in the material using the LDA + U approach. We find that a sufficiently high U indeed opens up a gap; however, this U leads to valence bands that disagree with experimental observations.

7.
J Phys Condens Matter ; 23(35): 355401, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21849716

RESUMO

We have performed first principles density functional theory calculations on TiC alloyed on the Ti sublattice with 3d transition metals ranging from Sc to Zn. The theory is accompanied by experimental investigations, both as regards materials synthesis as well as characterization. Our results show that by dissolving a metal with a weak ability to form carbides, the stability of the alloy is lowered and a driving force for the release of carbon from the carbide is created. During thin film growth of a metal carbide this effect will favour the formation of a nanocomposite with carbide grains in a carbon matrix. The choice of alloying element as well as its concentration will affect the relative amount of carbon in the carbide and in the carbon matrix. This can be used to design the structures of nanocomposites and their physical and chemical properties. One example of applications is as low-friction coatings. Of the materials studied, we suggest the late 3d transition metals as the most promising elements for this phenomenon, at least when alloying with TiC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA