Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ocul Surf ; 30: 307-319, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37984561

RESUMO

Part of the lacrimal functional unit, the cornea protects the ocular surface from numerous environmental aggressions and xenobiotics. Toxicological evaluation of compounds remains a challenge due to complex interactions between corneal nerve endings and epithelial cells. To this day, models do not integrate the physiological specificity of corneal nerve endings and are insufficient for the detection of low toxic effects essential to anticipate Toxicity-Induced Dry Eye (TIDE). Using high-content imaging tool, we here characterize toxicity-induced cellular alterations using primary cultures of mouse trigeminal sensory neurons and corneal epithelial cells in a compartmentalized microfluidic chip. We validate this model through the analysis of benzalkonium chloride (BAC) toxicity, a well-known preservative in eyedrops, after a single (6h) or repeated (twice a day for 15 min over 5 days) topical 5.10-4% BAC applications on the corneal epithelial cells and nerve terminals. In combination with high-content image analysis, this advanced microfluidic protocol reveal specific and tiny changes in the epithelial cells and axonal network as well as in trigeminal cells, not directly exposed to BAC, with ATF3/6 stress markers and phospho-p44/42 cell activation marker. Altogether, this corneal neuroepithelial chip enables the evaluation of toxic effects of ocular xenobiotics, distinguishing the impact on corneal sensory innervation and epithelial cells. The combination of compartmentalized co-culture/high-content imaging/multiparameter analysis opens the way for the systematic analysis of toxicants but also neuroprotective compounds.


Assuntos
Síndromes do Olho Seco , Microfluídica , Animais , Camundongos , Córnea , Compostos de Benzalcônio/toxicidade , Conservantes Farmacêuticos/toxicidade , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/diagnóstico
2.
Pharmaceutics ; 14(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36145607

RESUMO

Dry eye disease (DED) is a multifactorial disorder in which the eyes respond to minor stimuli with abnormal sensations, such as dryness, blurring, foreign body sensation, discomfort, irritation, and pain. Corneal pain, as one of DED's main symptoms, has gained recognition due to its increasing prevalence, morbidity, and the resulting social burden. The cornea is the most innervated tissue in the body, and the maintenance of corneal integrity relies on a rich density of nociceptors, such as polymodal nociceptor neurons, cold thermoreceptor neurons, and mechano-nociceptor neurons. Their sensory responses to different stimulating forces are linked to the specific expression of transient receptor potential (TRP) channels. TRP channels are a group of unique ion channels that play important roles as cellular sensors for various stimuli. These channels are nonselective cation channels with variable Ca2+ selectivity. TRP homologs are a superfamily of 28 different members that are subdivided into 7 different subfamilies based on differences in sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells, where they affect various stress-induced regulatory responses essential for normal vision maintenance. This article reviews the current knowledge about the expression, function, and regulation of TRPs in ocular surface tissues. We also describe their implication in DED and ocular pain. These findings contribute to evidence suggesting that drug-targeting TRP channels may be of therapeutic benefit in the clinical setting of ocular pain.

3.
Ocul Surf ; 25: 155-162, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35872076

RESUMO

PURPOSE: To study changes in the subbasal nerve plexus by In vivo confocal microscopy (IVCM) in Sjögren's Syndrome (SS) with or without associated Small Fiber Neuropathy (SFN), in order to prevent diagnostic delay. METHODS: Seventy-one patients with SS, including 19 with associated SFN, 20 healthy volunteers and 20 patients with Meibomian gland dysfunction (MGD) were included in this retrospective case-control study. IVCM was used to investigate subbasal nerve plexus density and morphology. RESULTS: Corneal sensitivity as evaluated with the Cochet-Bonnet aesthesiometer was significantly reduced in the SS group versus the control group (P = 0.026) and the MGD group (P = 0.037). The number of inflammatory cells was significantly increased in the SS group to 86.2 ± 82.1 cells/mm2 compared to the control group (P < 0.001). The density of the subbasal nerve plexus was significantly reduced to 16.7 ± 6.5 mm/mm2 in the SS group compared to the control group (P < 0.005) and the MGD group (P = 0.042). The tortuosity of the nerves in the SS group was significantly increased compared to the control group (P < 0.001) and the MGD group (P = 0.025). The average number of subbasal nerve plexus neuromas was significantly increased in the SS group compared to the control group (P = 0.001), with a significant increase in the average number of neuromas in SS patients with associated SFN compared to SS patients without SFN (P = 0.008). CONCLUSION: IVCM can be useful to detect corneal nerve changes in SS patients and may allow earlier diagnosis of the disease and to consider new therapeutic approaches.


Assuntos
Neuroma , Síndrome de Sjogren , Neuropatia de Pequenas Fibras , Estudos de Casos e Controles , Córnea/inervação , Diagnóstico Tardio , Humanos , Microscopia Confocal , Neuroma/complicações , Nervo Oftálmico , Estudos Retrospectivos , Síndrome de Sjogren/complicações , Síndrome de Sjogren/diagnóstico , Neuropatia de Pequenas Fibras/complicações
4.
Commun Biol ; 5(1): 330, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393515

RESUMO

The functional imaging within the trigeminal ganglion (TG) is highly challenging due to its small size and deep localization. This study combined a methodological framework able to dive into the rat trigeminal nociceptive system by jointly providing 1) imaging of the TG blood vasculature at microscopic resolution, and 2) the measurement of hemodynamic responses evoked by orofacial stimulations in anesthetized rats. Despite the small number of sensory neurons within the TG, functional ultrasound imaging was able to image and quantify a strong and highly localized hemodynamic response in the ipsilateral TG, evoked not only by mechanical or chemical stimulations of corneal nociceptive fibers, but also by cutaneous mechanical stimulations of the ophthalmic and maxillary orofacial regions using a von Frey hair. The in vivo quantitative imaging of the TG's vasculature using ultrasound localization microscopy combined with in toto labelling reveals particular features of the vascularization of the area containing the sensory neurons, that are likely the origin of this strong vaso-trigeminal response. This innovative imaging approach opens the path for future studies on the mechanisms underlying changes in trigeminal local blood flow and evoked hemodynamic responses, key mechanisms for the understanding and treatment of debilitating trigeminal pain conditions.


Assuntos
Microscopia , Gânglio Trigeminal , Animais , Face , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal/diagnóstico por imagem , Ultrassonografia
5.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408986

RESUMO

The cornea, an anterior ocular tissue that notably serves to protect the eye from external insults and refract light, requires constant epithelium renewal and efficient healing following injury to maintain ocular homeostasis. Although several key cell populations and molecular pathways implicated in corneal wound healing have already been thoroughly investigated, insufficient/impaired or excessive corneal wound healing remains a major clinical issue in ophthalmology, and new avenues of research are still needed to further improve corneal wound healing. Because of its implication in numerous cellular/tissular homeostatic processes and oxidative stress, there is growing evidence of the role of Hedgehog signaling pathway in physiological and pathological corneal wound healing. Reviewing current scientific evidence, Hedgehog signaling and its effectors participate in corneal wound healing mainly at the level of the corneal and limbal epithelium, where Sonic Hedgehog-mediated signaling promotes limbal stem cell proliferation and corneal epithelial cell proliferation and migration following corneal injury. Hedgehog signaling could also participate in corneal epithelial barrier homeostasis and in pathological corneal healing such as corneal injury-related neovascularization. By gaining a better understanding of the role of this double-edged sword in physiological and pathological corneal wound healing, fascinating new research avenues and therapeutic strategies will undoubtedly emerge.


Assuntos
Lesões da Córnea , Epitélio Corneano , Córnea/metabolismo , Lesões da Córnea/metabolismo , Epitélio Corneano/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Cicatrização/fisiologia
6.
J Neuroinflammation ; 19(1): 63, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236378

RESUMO

BACKGROUND: Glaucoma is a blinding degenerative neuropathy in which the death of retinal ganglion cells (RGCs) causes progressive loss of visual field and eventually vision. Neuroinflammation appears to be a key event in the progression and spread of this disease. Thus, microglial immunomodulation represents a promising therapeutic approach in which mesenchymal stem cells (MSCs) might play a crucial role. Their neuroprotective and regenerative potentials have already raised hope in animal models. Yet no definitive treatment has been developed, and some safety concerns have been reported in human trials. In the present study, we investigated the neuroprotective and immunomodulatory properties as well as the safety of MSCs in an ex vivo neuroretina explant model. METHODS: Labeled rat bone marrow MSCs were placed in coculture with rat retinal explants after optic nerve axotomy. We analyzed the neuroprotective effect of MSCs on RGC survival by immunofluorescence using RBPMS, Brn3a, and NeuN markers. Gliosis and retinal microglial activation were measured by using GFAP, CD68, and ITGAM mRNA quantification and GFAP, CD68, and Iba1 immunofluorescence stainings. We also analyzed the mRNA expression of both 'M1' or classically activated state inflammatory cytokines (TNFα, IL1ß, and IL6), and 'M2' or alternatively activated state microglial markers (Arginase 1, IL10, CD163, and TNFAIP6). RESULTS: The number of RGCs was significantly higher in retinal explants cultured with MSCs compared to the control group at Day 7 following the optic nerve axotomy. Retinal explants cultured with MSCs showed a decrease in mRNA markers of gliosis and microglial activations, and immunostainings revealed that GFAP, Iba1, and CD68 were limited to the inner layers of the retina compared to controls in which microglial activation was observed throughout the retina. In addition, MSCs inhibited the M1 phenotype of the microglia. However, edema of the explants was observed in presence of MSCs, with an increase in fibronectin labeling at the surface of the explant corresponding to an epiretinal membrane-like phenotype. CONCLUSION: Using an ex vivo neuroretina model, we demonstrated a neuroprotective and immunomodulatory effect of MSCs on RGCs. Unfortunately, the presence of MSCs also led to explant edema and epiretinal membrane formation, as described in human trials. Using the MSC secretome might offer the beneficial effects of MSCs without their potential adverse effects, through paracrine signaling.


Assuntos
Células-Tronco Mesenquimais , Células Ganglionares da Retina , Animais , Modelos Animais de Doenças , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Neuroproteção/fisiologia , Ratos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
7.
Skin Pharmacol Physiol ; 35(3): 148-155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35045415

RESUMO

INTRODUCTION: Sensitive eyes are commonly reported by patients, but there are very few epidemiological studies on this disorder. The aim of this study was the evaluation of the self-reported frequency of sensitive eyes and the association with sensitive skin. METHODS: A survey was performed on a representative sample of the population aged more than 18 years in five different countries (Brazil, China, France, Russia, and the USA). All participants answered a questionnaire on sociodemographic characteristics; skin phototype; eye color; tobacco consumption; exposure to sunlight, air pollution, or having pets; and sleep disorders. The presence of sensitive eyes, eyelids, or skin and their triggering factors were assessed with specific questions. RESULTS: A total of 10,743 individuals (5,285 men and 5,458 women) were included in the study. Among them, 48.2% reported having sensitive skin and 46.0% reported having sensitive eyes. Sensitive eyes were more frequently reported by women (46.5%) than men (39.4%) in all countries, with the exception of China. The presence of sensitive eyes was more frequent if skin was very sensitive. More than half of subjects with sensitive eyes declared that their triggering factors were exposure to sunlight, dust, touch pad screens, or computer screens or dry air. They were more exposed to pollution and tobacco. Their phototype (including eye color) was lighter. DISCUSSION/CONCLUSION: This large study shows that self-declared sensitive eyes are very frequent and commonly associated with sensitive skin. Triggering factors of sensitive eyes are more specific.


Assuntos
Dermatopatias , China/epidemiologia , Feminino , França/epidemiologia , Humanos , Masculino , Pele , Luz Solar
8.
J Appl Toxicol ; 42(5): 718-737, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34648674

RESUMO

The 21st century has seen a steadily increasing social awareness of animal suffering, with increased attention to ethical considerations. Developing new integrated approaches to testing and assessment (IATA) strategies is an Organisation for Economic Co-operation and Development (OECD) goal to reduce animal testing. Currently, there is a lack of alternative models to test for ocular surface toxicity (aside from irritation) in lieu of the Draize eye irritation test (OECD guideline No. 405) performed in rabbits. Five alternative in vitro or ex vivo methods have been validated to replace this reference test, but only in combination. However, pathologies like Toxicity-Induced Dry Eye (TIDE), cataract, glaucoma, and neuropathic pain can occur after exposure to a pharmaceutical product or chemical and therefore need to be anticipated. To do so, new models of lacrimal glands, lens, and neurons innervating epithelia are required. These models must take into account real-life exposure (dose, time, and tear film clearance). The scientific community is working hard to develop new, robust, alternative, in silico, and in vitro models, while attempting to balance ethics and availability of biological materials. This review provides a broad overview of the validated methods for analyzing ocular irritation and those still used by some industries, as well as promising models that need to be optimized according to the OECD. Finally, we give an overview of recently developed innovative models, which could become new tools in the evaluation of ocular surface toxicity within the scope of IATAs.


Assuntos
Alternativas aos Testes com Animais , Irritantes , Animais , Olho , Irritantes/toxicidade , Organização para a Cooperação e Desenvolvimento Econômico , Coelhos , Testes de Toxicidade/métodos
9.
Biomedicines ; 9(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680542

RESUMO

Background: This study aimed to compare the corneal nerve structural abnormalities detected using in vivo confocal microscopy (IVCM) in patients with neuropathic corneal pain (NCP) secondary to primary meibomian gland dysfunction (MGD) or autoimmune dry eye (AIDE). Methods: A two-stage retrospective nested case-control study was conducted. First, data from patients with either MGD or AIDE were assessed, selecting only cases with no corneal pain (VAS = 0) or severe pain (VAS ≥ 8). Ocular signs and symptoms of the 238 selected patients were compared between painful and painless cases. Next, painful patients with no corneal damage (Oxford score ≤ 1) were selected within each study group, defining the cases with NCP (i.e., "pain without stain"). IVCM images from all groups were compared with prospectively-recruited healthy controls, focusing on dendritiform cell density and nerve abnormalities (density, tortuosity, microneuromas). Results: AIDE patients had more ocular signs/symptoms than MGD patients. Compared with healthy controls, AIDE-related NCP patients showed increased nerve tortuosity and number of neuromas, whereas MGD-related NCP patients had reduced nerve density and increased number, perimeter, and area of microneuromas. Microneuromas were also observed in healthy controls. Furthermore, a higher number of microneuromas was found in MGD-related NCP compared to AIDE-related NCP or painless MGD. Conclusions: MGD-related NCP was associated with significantly more corneal nerve abnormalities than AIDE-related NCP or healthy controls. Although IVCM can be useful to detect NCP-related corneal nerve changes in such patients, the diagnosis of dry eye disease-related NCP will require an association of several IVCM-based criteria without relying solely on the presence of microneuromas.

10.
J Neurophysiol ; 126(1): 28-46, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34038184

RESUMO

The action potential of most vertebrate neurons initiates in the axon initial segment (AIS) and is then transmitted to the soma where it is regenerated by somatodendritic sodium channels. For successful transmission, the AIS must produce a strong axial current, so as to depolarize the soma to the threshold for somatic regeneration. Theoretically, this axial current depends on AIS geometry and Na+ conductance density. We measured the axial current of mouse retinal ganglion cells using whole cell recordings with post hoc AIS labeling. We found that this current is large, implying high Na+ conductance density, and carries a charge that covaries with capacitance so as to depolarize the soma by ∼30 mV. Additionally, we observed that the axial current attenuates strongly with depolarization, consistent with sodium channel inactivation, but temporally broadens so as to preserve the transmitted charge. Thus, the AIS appears to be organized so as to reliably backpropagate the axonal action potential.NEW & NOTEWORTHY We measured the axial current produced at spike initiation by the axon initial segment of mouse retinal ganglion cells. We found that it is a large current, requiring high sodium channel conductance density, which covaries with cell capacitance so as to ensure a ∼30 mV depolarization. During sustained depolarization the current attenuated, but it broadened to preserve somatic depolarization. Thus, properties of the initial segment are adjusted to ensure backpropagation of the axonal action potential.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Corpo Celular/fisiologia , Dendritos/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos C57BL , Canais de Sódio/fisiologia
11.
J Neuroinflammation ; 18(1): 111, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975636

RESUMO

BACKGROUND: Dry eye disease (DED) is a multifactorial disease of the ocular surface accompanied by neurosensory abnormalities. Here, we evaluated the effectiveness of transient receptor potential vanilloid-1 (TRPV1) blockade to alleviate ocular pain, neuroinflammation, and anxiety-like behavior associated with severe DED. METHODS: Chronic DED was induced by unilateral excision of the Harderian and extraorbital lacrimal glands of adult male mice. Investigations were conducted at 21 days after surgery. The mRNA levels of TRPV1, transient receptor potential ankyrin-1 (TRPA1), and acid-sensing ion channels 1 and 3 (ASIC1 and ASIC3) in the trigeminal ganglion (TG) were evaluated by RNAscope in situ hybridization. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous and stimulated (cold, heat, and acid) corneal nerve responsiveness in ex vivo eye preparations. DED mice received topical instillations of the TRPV1 antagonist (capsazepine) twice a day for 2 weeks from d7 to d21 after surgery. The expression of genes involved in neuropathic and inflammatory pain was evaluated in the TG using a global genomic approach. Chemical and mechanical corneal nociception and spontaneous ocular pain were monitored. Finally, anxiety-like behaviors were assessed by elevated plus maze and black and white box tests. RESULTS: First, in situ hybridization showed DED to trigger upregulation of TRPV1, TRPA1, ASIC1, and ASIC3 mRNA in the ophthalmic branch of the TG. DED also induced overexpression of genes involved in neuropathic and inflammatory pain in the TG. Repeated instillations of capsazepine reduced corneal polymodal responsiveness to heat, cold, and acidic stimulation in ex vivo eye preparations. Consistent with these findings, chronic capsazepine instillation inhibited the upregulation of genes involved in neuropathic and inflammatory pain in the TG of DED animals and reduced the sensation of ocular pain, as well as anxiety-like behaviors associated with severe DED. CONCLUSION: These data provide novel insights on the effectiveness of TRPV1 antagonist instillation in alleviating abnormal corneal neurosensory symptoms induced by severe DED, opening an avenue for the repositioning of this molecule as a potential analgesic treatment for patients suffering from chronic DED.


Assuntos
Capsaicina/análogos & derivados , Córnea , Síndromes do Olho Seco/metabolismo , Dor/etiologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Capsaicina/farmacologia , Síndromes do Olho Seco/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndrome
13.
Front Cell Neurosci ; 14: 610342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362474

RESUMO

The cornea is the most densely innervated and sensitive tissue in the body. The cornea is exclusively innervated by C- and A-delta fibers, including mechano-nociceptors that are triggered by noxious mechanical stimulation, polymodal nociceptors that are excited by mechanical, chemical, and thermal stimuli, and cold thermoreceptors that are activated by cooling. Noxious stimulations activate corneal nociceptors whose cell bodies are located in the trigeminal ganglion (TG) and project central axons to the trigeminal brainstem sensory complex. Ocular pain, in particular, that driven by corneal nerves, is considered to be a core symptom of inflammatory and traumatic disorders of the ocular surface. Ocular surface injury affecting corneal nerves and leading to inflammatory responses can occur under multiple pathological conditions, such as chemical burn, persistent dry eye, and corneal neuropathic pain as well as after some ophthalmological surgical interventions such as photorefractive surgery. This review depicts the morphological and functional changes of corneal nerve terminals following corneal damage and dry eye disease (DED), both ocular surface conditions leading to sensory abnormalities. In addition, the recent fundamental and clinical findings of the importance of peripheral and central neuroimmune interactions in the development of corneal hypersensitivity are discussed. Next, the cellular and molecular changes of corneal neurons in the TG and central structures that are driven by corneal nerve abnormalities are presented. A better understanding of the corneal nerve abnormalities as well as neuroimmune interactions may contribute to the identification of a novel therapeutic targets for alleviating corneal pain.

14.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228217

RESUMO

Dry eye disease (DED) is commonly associated with ocular surface inflammation and pain. In this study, we evaluated the effectiveness of repeated instillations of transient receptor potential melastatin 8 (TRPM8) ion channel antagonist M8-B on a mouse model of severe DED induced by the excision of extra-orbital lacrimal and Harderian glands. M8-B was topically administered twice a day from day 7 until day 21 after surgery. Cold and mechanical corneal sensitivities and spontaneous ocular pain were monitored at day 21. Ongoing and cold-evoked ciliary nerve activities were next evaluated by electrophysiological multi-unit extracellular recording. Corneal inflammation and expression of genes related to neuropathic pain and inflammation were assessed in the trigeminal ganglion. We found that DED mice developed a cold allodynia consistent with higher TRPM8 mRNA expression in the trigeminal ganglion (TG). Chronic M8-B instillations markedly reversed both the corneal mechanical allodynia and spontaneous ocular pain commonly associated with persistent DED. M8-B instillations also diminished the sustained spontaneous and cold-evoked ciliary nerve activities observed in DED mice as well as inflammation in the cornea and TG. Overall, our study provides new insight into the effectiveness of TRPM8 blockade for alleviating corneal pain syndrome associated with severe DED, opening a new avenue for ocular pain management.


Assuntos
Anti-Inflamatórios/farmacologia , Síndromes do Olho Seco/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Ácidos Nicotínicos/farmacologia , Canais de Cátion TRPM/genética , Tiofenos/farmacologia , Administração Oftálmica , Animais , Anti-Inflamatórios/uso terapêutico , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Temperatura Baixa , Córnea/efeitos dos fármacos , Córnea/metabolismo , Córnea/fisiopatologia , Modelos Animais de Doenças , Síndromes do Olho Seco/complicações , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/metabolismo , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Gânglios Parassimpáticos/efeitos dos fármacos , Gânglios Parassimpáticos/metabolismo , Gânglios Parassimpáticos/fisiopatologia , Regulação da Expressão Gênica , Glândula de Harder/cirurgia , Hiperalgesia/etiologia , Hiperalgesia/genética , Hiperalgesia/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Aparelho Lacrimal/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/etiologia , Neuralgia/genética , Neuralgia/metabolismo , Prostaglandina-E Sintases/genética , Prostaglandina-E Sintases/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo , Gânglio Trigeminal/fisiopatologia
15.
Biomed Pharmacother ; 132: 110794, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33035833

RESUMO

Corneal pain is considered to be a core symptom of ocular surface disruption and inflammation. The management of this debilitating condition is still a therapeutic challenge. Recent evidence supports a role of the opioid system in the management of corneal nociception. However, the functional involvement of the mu opioid receptor (MOR) underlying this analgesic effect is not known. We first investigated the expression of the MOR in corneal nerve fibers and trigeminal ganglion (TG) neurons in control mice and a mouse model of corneal inflammatory pain. We then evaluated the anti-nociceptive and electrophysiological effects of DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol] enkephalin), a MOR-selective ligand. MOR immunoreactivity was detected in corneal nerve fibers and primary afferent neurons of the ophthalmic branch of the TG of naive mice. MOR expression was significantly higher in both structures under conditions of inflammatory corneal pain. Topical ocular administration of DAMGO strongly reduced both the mechanical (von Frey) and chemical (capsaicin) corneal hypersensitivity associated with inflammatory ocular pain. Repeated instillations of DAMGO also markedly reversed the elevated spontaneous activity of the ciliary nerve and responsiveness of corneal polymodal nociceptors that were observed in mice with corneal pain. Finally, these DAMGO-induced behavioral and electrophysiological responses were totally blunted by the topical application of naloxone methiodide, an opioid receptor antagonist. Overall, these results provide evidence that topical pharmacological MOR activation may constitute a therapeutic target for the treatment of corneal pain and improve corneal nerve function to alleviate chronic pain.


Assuntos
Analgésicos Opioides/farmacologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Dor Ocular/tratamento farmacológico , Receptores Opioides mu/agonistas , Administração Oftálmica , Analgésicos Opioides/administração & dosagem , Animais , Córnea/efeitos dos fármacos , Córnea/inervação , Córnea/patologia , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/patologia , Modelos Animais de Doenças , Ala(2)-MePhe(4)-Gly(5)-Encefalina/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
J Exp Med ; 217(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32648893

RESUMO

Wallerian degeneration (WD) is a process of autonomous distal degeneration of axons upon injury. Macrophages (MPs) of the peripheral nervous system (PNS) are the main cellular agent controlling this process. Some evidence suggests that resident PNS-MPs along with MPs of hematogenous origin may be involved, but whether these two subsets exert distinct functions is unknown. Combining MP-designed fluorescent reporter mice and coherent anti-Stokes Raman scattering (CARS) imaging of the sciatic nerve, we deciphered the spatiotemporal choreography of resident and recently recruited MPs after injury and unveiled distinct functions of these subsets, with recruited MPs being responsible for efficient myelin stripping and clearance and resident MPs being involved in axonal regrowth. This work provides clues to tackle selectively cellular processes involved in neurodegenerative diseases.


Assuntos
Macrófagos/imunologia , Degeneração Walleriana/diagnóstico por imagem , Degeneração Walleriana/imunologia , Animais , Axônios/fisiologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bainha de Mielina/fisiologia , Microscopia Óptica não Linear , Remielinização/genética , Nervo Isquiático/diagnóstico por imagem , Nervo Isquiático/imunologia , Nervo Isquiático/lesões , Transcriptoma
17.
Cells ; 9(3)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106630

RESUMO

Glaucoma is one of the leading causes of irreversible blindness in the world and remains a major public health problem. To date, incomplete knowledge of this disease's pathophysiology has resulted in current therapies (pharmaceutical or surgical) unfortunately having only a slowing effect on disease progression. Recent research suggests that glaucomatous optic neuropathy is a disease that shares common neuroinflammatory mechanisms with "classical" neurodegenerative pathologies. In addition to the death of retinal ganglion cells (RGCs), neuroinflammation appears to be a key element in the progression and spread of this disease. Indeed, early reactivity of glial cells has been observed in the retina, but also in the central visual pathways of glaucoma patients and in preclinical models of ocular hypertension. Moreover, neuronal lesions are not limited to retinal structure, but also occur in central visual pathways. This review summarizes and puts into perspective the experimental and clinical data obtained to date to highlight the need to develop neuroprotective and immunomodulatory therapies to prevent blindness in glaucoma patients.


Assuntos
Glaucoma/fisiopatologia , Inflamação/complicações , Doenças do Nervo Óptico/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos
18.
Brain Behav Immun ; 88: 252-255, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32014576

RESUMO

The nervous and immune systems communicate with one another and jointly influence functional responses. To highlight the many advances on this hot topic, Brain, Behavior, and Immunity conceptualized a Special Issue entitled "Dialing in the Dialogue Between Inflammation and the Brain." Recent advances and exciting developments in understanding communication pathways between the brain and the immune system during both physiological and pathological insults are highlighted.


Assuntos
Encéfalo , Inflamação , Humanos , Sistema Imunitário
19.
Toxicol Lett ; 319: 74-84, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707104

RESUMO

Benzalkonium chloride (BAK), a quaternary ammonium compound widely used as disinfecting agent as well as preservative in eye drops is known to induce toxic effects on the ocular surface with inflammation and corneal nerve damage leading to dry eye disease (DED) in the medium-to-long term. The aim of this study was to evaluate in vitro the toxicity of a conditioned medium produced by corneal epithelial cells previously exposed to BAK (BAK-CM) on trigeminal neuronal cells. A human corneal epithelial (HCE) cell line was exposed to 5.10-3% BAK (i.e. 0.005% BAK) for 15 min and let recover for 5 h to prepare a BAK-CM. This BAK concentration is the lowest one found in eye drops. After this recovery period, BAK effect on HCE cells displayed cytotoxicity, morphological alteration, apoptosis, oxidative stress, ATP release, CCL2 and IL6 gene induction, as well as an increase in CCL2, IL-6 and MIF release. Next, a mouse trigeminal ganglion primary culture was exposed to the BAK-CM for 2 h, 4 h or 24 h. Whereas BAK-CM did not alter neuronal cell morphology, or induced neuronal cytotoxicity or oxidative stress, BAK-CM induced gene expression of Fos (neuronal activation marker), Atf3 (neuronal injury marker), Ccl2 and Il6 (inflammatory markers). Two and 4 h BAK-CM exposure promoted a neuronal damage (ATF-3, phospho-p38 increases; phospho-Stat3 decreases) while 24 h-BAK-CM exposure initiated a prosurvival pathway activation (phospho-p44/42, phospho-Akt increases; ATF-3, GADD153, active Caspase-3 decreases). In conclusion, this in vitro model, simulating paracrine mechanisms, represents an interesting tool to highlight the indirect toxic effects of BAK or any other xenobiotic on corneal trigeminal neurons and may help to better understand the cellular mechanisms that occur during DED pathophysiology.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Benzalcônio/toxicidade , Células Epiteliais/efeitos dos fármacos , Epitélio Corneano/efeitos dos fármacos , Inflamação/induzido quimicamente , Neurônios/efeitos dos fármacos , Conservantes Farmacêuticos/toxicidade , Gânglio Trigeminal/efeitos dos fármacos , Fator 3 Ativador da Transcrição/biossíntese , Fator 3 Ativador da Transcrição/efeitos dos fármacos , Animais , Linhagem Celular , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/patologia , Epitélio Corneano/citologia , Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Gânglio Trigeminal/citologia
20.
J Neuroinflammation ; 16(1): 268, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847868

RESUMO

BACKGROUND: Dry eye disease (DED) is a multifactorial disease associated with ocular surface inflammation, pain, and nerve abnormalities. We studied the peripheral and central neuroinflammatory responses that occur during persistent DED using molecular, cellular, behavioral, and electrophysiological approaches. METHODS: A mouse model of DED was obtained by unilateral excision of the extraorbital lachrymal gland (ELG) and Harderian gland (HG) of adult female C57BL/6 mice. In vivo tests were conducted at 7, 14, and 21 days (d) after surgery. Tear production was measured by a phenol red test and corneal alterations and inflammation were assessed by fluorescein staining and in vivo confocal microscopy. Corneal nerve morphology was evaluated by nerve staining. Mechanical corneal sensitivity was monitored using von Frey filaments. Multi-unit extracellular recording of ciliary nerve fiber activity was used to monitor spontaneous corneal nerve activity. RT-qPCR and immunostaining were used to determine RNA and protein levels at d21. RESULTS: We observed a marked reduction of tear production and the development of corneal inflammation at d7, d14, and d21 post-surgery in DED animals. Chronic DE induced a reduction of intraepithelial corneal nerve terminals. Behavioral and electrophysiological studies showed that the DED animals developed time-dependent mechanical corneal hypersensitivity accompanied by increased spontaneous ciliary nerve fiber electrical activity. Consistent with these findings, DED mice exhibited central presynaptic plasticity, demonstrated by a higher Piccolo immunoreactivity in the ipsilateral trigeminal brainstem sensory complex (TBSC). At d21 post-surgery, mRNA levels of pro-inflammatory (IL-6 and IL-1ß), astrocyte (GFAP), and oxidative (iNOS2 and NOX4) markers increased significantly in the ipsilateral trigeminal ganglion (TG). This correlated with an increase in Iba1, GFAP, and ATF3 immunostaining in the ipsilateral TG of DED animals. Furthermore, pro-inflammatory cytokines (IL-6, TNFα, IL-1ß, and CCL2), iNOS2, neuronal (ATF3 and FOS), and microglial (CD68 and Itgam) markers were also upregulated in the TBSC of DED animals at d21, along with increased immunoreactivity against GFAP and Iba1. CONCLUSIONS: Overall, these data highlight peripheral sensitization and neuroinflammatory responses that participate in the development and maintenance of dry eye-related pain. This model may be useful to identify new analgesic molecules to alleviate ocular pain.


Assuntos
Córnea/fisiopatologia , Síndromes do Olho Seco/fisiopatologia , Hiperalgesia/fisiopatologia , Plasticidade Neuronal/fisiologia , Núcleos do Trigêmeo/fisiopatologia , Animais , Doença Crônica , Feminino , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Trigeminal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...