Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(13): 4572-4577, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28321446

RESUMO

Exciton relaxation dynamics of CdSe and quasi-type-II CdSe/CdS core/shell nanocrystals were examined using femtosecond two-dimensional electronic spectroscopy (2DES). The use of 2DES allowed for determination of structure-specific and state-resolved carrier dynamics for CdSe nanocrystals formed with five, or fewer, CdS passivation monolayers (ML). For CdSe and CdSe/CdS nanocrystals formed with one through three MLs of CdS, excitation using broad bandwidth femtosecond visible laser pulses generated electron-hole pairs among the |X1〉 = 2.14 eV and |X2〉 = 2.27 eV exciton states. For both excitations, the electron is promoted to the lowest energy excited (1Se) conduction-band state and the hole is in the 1S3/2 (X1) or 2S3/2 (X2) valence-band state. Therefore, the relaxation dynamics of the hot hole were isolated by monitoring the-time-dependent amplitude of 2DES cross peaks. The time constant for hot hole relaxation within the CdSe valence band was 150 ± 45 fs. Upon passivation by CdS, this hole relaxation time constant increased to 170 ± 30 fs (CdSe/CdS-3ML). This small increase was attributed to the formation of a graded, or alloyed, interfacial region that precedes the growth of a uniform CdS capping layer. The small increase in hole relaxation time reflects the larger nanocrystal volume of the CdSe/CdS system with respect to the CdSe nanocrystal core. In contrast, the dynamics of larger core/shell nanocrystals (≥4ML CdS) exhibited a picosecond buildup in 2DES cross-peak amplitude. This time-dependent response was attributed to interfacial hole transfer from CdS to CdSe valence-band states. Importantly, the 2DES data distinguish CdSe exciton relaxation from interfacial carrier transfer dynamics. In combination, isolation of structurally well-defined nanocrystals and state-resolved 2DES can be used to examine directly the influence of nanoscale structural modifications on electronic carrier dynamics, which are critical for developing nanocluster-based photonic devices.

2.
Opt Express ; 25(4): 4403-4413, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241643

RESUMO

We introduce a birefringent interferometer for Fourier transform (FT) spectroscopy in the mid-infrared, covering the vibrational fingerprint region (5-10 µm, 1000-2000 cm-1), which is crucial for molecular identification. Our interferometer employs the crystal calomel (Hg2Cl2), which combines high birefringence (ne-no≈0.55) with a broad transparency range (0.38-20 µm). We adopt a design based on birefringent wedges, which is simple and compact and guarantees excellent delay accuracy and long-term stability. We demonstrate FTIR spectroscopy, with a frequency resolution of 3 cm-1, as well as two-dimensional IR (2DIR) spectroscopy. Our setup can be extended to other spectroscopic modalities such as vibrational circular dichroism and step-scan FT spectroscopy.

3.
Chem Sci ; 7(1): 666-672, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28791110

RESUMO

Liquid complex hydrides are a new class of hydrogen storage materials with several advantages over solid hydrides, e.g. they are flexible in shape, they are a flowing fluid and their convective properties facilitate heat transport. The physical and chemical properties of a gaseous hydride change when the molecules are adsorbed on a material with a large specific surface area, due to the interaction of the adsorbate with the surface of the host material and the reduced number of collisions between the hydride molecules. In this paper we report the synthesis and stabilization of gaseous Ti(BH4)3. The compound was successfully stabilized through adsorption in nanocavities. Ti(BH4)3, upon synthesis in its pure form, spontaneously and rapidly decomposes into diborane and titanium hydride at room temperature in an inert gas, e.g. argon. Ti(BH4)3 adsorbed in the cavities of a metal organic framework is stable for several months at ambient temperature and remains stable up to 350 K under vacuum. The adsorbed Ti(BH4)3 reaches approximately twice the density of the gas phase. The specific surface area (BET, N2 adsorption) of the MOF decreased from 1200 m2 g-1 to 770 m2 g-1 upon Ti(BH4)3 adsorption.

4.
Anal Chim Acta ; 642(1-2): 228-34, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19427481

RESUMO

Multivariate curve resolution-alternating least squares (MCR-ALS) of multi-experiment data analysis was successfully applied to elucidate the photodynamics of the N-(3-methylsalicylidene)-3-methylaniline by analyzing UV-vis femtosecond transient absorption spectra. The two-way data obtained present some specific difficulties linked to the nature of the transient spectra collected and to the overlapping of the photodynamics of the solvent and other contributions at short time scale (below 1 ps). Advantage was taken from the flexibility of the hybrid hard-soft multivariate curve resolution (HS-MCR) approach to consider a non-absorbing contribution in the kinetic model and to provide a functional description of the solvent in soft-modelling. The results obtained confirm the existence of an intermediate excited state in the process, which is created just after the ESIPT. It was observed that this intermediate relaxes in a few hundreds of femtosecond to the S(1) fluorescent cis-keto excited state and a decay time constant of 219 fs was found. These results confirm other femtosecond time-resolved fluorescence studies on salicylidene aniline molecules. Previous hypothesis on the formation of the trans-keto photoproduct from the S(1) fluorescent cis-keto state (time constant 14 ps) is also confirmed.


Assuntos
Compostos de Anilina/química , Bases de Schiff/química , Espectrofotometria Ultravioleta/métodos , Cinética , Análise dos Mínimos Quadrados , Modelos Químicos , Análise Multivariada , Fotoquímica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...