Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Proteins Proteom ; 1873(1): 141049, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349271

RESUMO

Dystrophin Dp71 is essential for the development of the nervous system. Its alteration is associated with intellectual disability. Different Dp71 isoforms are generated by alternative splicing; however, their functions have not been fully described. Here, we identified Dp71dΔ71-associated proteins to understand the complex functions. PC12 cells, stably transfected with pTRE2pur-Myc/Dp71dΔ71 or pTRE2pur-Myc empty vector (EV), were analyzed by immunoprecipitation followed with quantitative proteomics with data-independent acquisition and ion mobility separation. We used the Top3 method to quantify absolutely every protein detected. A total of 106 proteins were quantified with Progenesis QI software and the database UP000002494. Seven new proteins associated with Dp71dΔ71 were selected with at least 2-fold quantity between immunoprecipitated proteins of PC12-Myc/Dp71dΔ71 versus PC12-EV cells. These results revealed new proteins that interact with Dp71dΔ71, including ß-Tubulin, S-adenosylmethionine synthase isoform type-2, adapter molecule crk, helicase with zinc finger 2, WD repeat domain 93, cyclin-L2 and myosin-10, which are related to cell migration and/or cell growth. The results lay the foundation for future research on the relationship between these proteins and Dp71 isoforms.

2.
Geroscience ; 46(2): 2177-2195, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37874452

RESUMO

Postmenopausal osteoporosis is a public health problem leading to an increased risk of fractures, negatively impacting women's health. The absence of sensitive and specific biomarkers for early detection of osteoporosis represents a substantial challenge for improving patient management. Herein, we aimed to identify potential candidate proteins associated with low bone mineral density (BMD) in postmenopausal women from the Mexican population. Serum samples from postmenopausal women (40 with normal BMD, 40 with osteopenia (OS), and 20 with osteoporosis (OP)) were analyzed by label-free LC-MS/MS quantitative proteomics. Proteome profiling revealed significant differences between the OS and OP groups compared to individuals with normal BMD. A quantitative comparison of proteins between groups indicated 454 differentially expressed proteins (DEPs). Compared to normal BMD, 14 and 214 DEPs were found in OS and OP groups, respectively, while 226 DEPs were identified between OS and OP groups. The protein-protein interaction and enrichment analysis of DEPs were closely linked to the bone mineral content, skeletal morphology, and immune response activation. Based on their role in bone metabolism, a panel of 12 candidate biomarkers was selected, of which 1 DEP (RYR1) was found upregulated in the OS and OP groups, 8 DEPs (APOA1, SHBG, FETB, MASP1, PTK2B, KNG1, GSN, and B2M) were upregulated in OP and 3 DEPs (APOA2, RYR3, and HBD) were downregulated in OS or OP. The proteomic analysis described here may help discover new and potentially non-invasive biomarkers for the early diagnosis of osteoporosis in postmenopausal women.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Humanos , Feminino , Pós-Menopausa , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Biomarcadores
3.
Cell Death Discov ; 9(1): 272, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507361

RESUMO

Neural progenitor cells (NPCs) of the subventricular zone proliferate in response to ischemic stroke in the adult mouse brain. Newly generated cells have been considered to influence recovery following a stroke. However, the mechanism underlying such protection is a matter of active study since it has been thought that proliferating NPCs mediate their protective effects by secreting soluble factors that promote recovery rather than neuronal replacement in the ischemic penumbra. We tested the hypothesis that this mechanism is mediated by the secretion of multimolecular complexes in extracellular vesicles (EVs). We found that the molecular influence of oxygen and glucose-deprived (OGD) NPCs-derived EVs is very limited in improving overt neurological alterations caused by stroke compared to our recently reported astrocyte-derived EVs. However, when we inhibited the ischemia-triggered proliferation of NPCs with the chronic administration of the DNA synthesis inhibitor Ara-C, the effect of NPC-derived EVs became evident, suggesting that the endogenous protection exerted by the proliferation of NPC is mainly carried out through a mechanism that involves the intercellular communication mediated by EVs. We analyzed the proteomic content of NPC-derived EVs cargo with label-free relative abundance mass spectrometry and identified several molecular mediators of neuronal recovery within these vesicles. Our findings indicate that NPC-derived EVs are protective against the ischemic cascade activated by stroke and, thus, hold significant therapeutic potential.

4.
Microorganisms ; 11(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512813

RESUMO

In this paper, sediments from the Santiago River were characterized to look for an alternative source of inoculum for biogas production. A proteomic analysis of methane-processing archaea present in these sediments was carried out. The Euryarchaeota superkingdom of archaea is responsible for methane production and methane assimilation in the environment. The Santiago River is a major river in México with great pollution and exceeded recovery capacity. Its sediments could contain nutrients and the anaerobic conditions for optimal growth of Euryarchaeota consortia. Batch bioreactor experiments were performed, and a proteomic analysis was conducted with current database information. The maximum biogas production was 266 NmL·L-1·g VS-1, with 33.34% of methane, and for proteomics, 3206 proteins were detected from 303 species of 69 genera. Most of them are metabolically versatile members of the genera Methanosarcina and Methanosarcinales, both with 934 and 260 proteins, respectively. These results showed a diverse euryarcheotic species with high potential to methane production. Although related proteins were found and could be feeding this metabolism through the methanol and acetyl-CoA pathways, the quality obtained from the biogas suggests that this metabolism is not the main one in carbon use, possibly the sum of several conditions including growth conditions and the pollution present in these sediments.

5.
Toxicon ; 224: 107030, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649760

RESUMO

A high diversity of rattlesnake species can be found in the Baja California peninsula and the island of the Gulf of California, nevertheless, their venom has been poorly evaluated. The aim of this work was to present the first characterization of endemic Crotalus mitchellii, micro endemic C. polisi and C. thalassoporus venoms. All samples provoke human plasma coagulation showing doses in the rank of 2.3-41.0 µg and also produce rapid hydrolysis of the alpha chain of bovine fibrinogen while the beta chain is attacked at larger incubation periods by C. polisi and especially by C. thalassoporus. Phospholipase activity ranging from 23.2 to 173.8 U/mg. The venoms of C. thalassoporus and C. polisi show very high hemorrhagic activity (from 0.03 to 0.31 µg). A total of 130 toxin-related proteins were identified and classified into ten families. Crotalus mitchellii venom was characterized by high abundance of crotoxin-like and other phospholipase proteins (34.5%) and serine proteinases (29.8%). Crotalus polisi showed a similar proportion of metalloproteinases (34%) and serine proteinases (22.8%) components with important contribution of C-type lectins (14.3%) and CRiSP (14.0%) proteins. Venom of C. thalassoporus is dominated by metalloproteases that amount to more than 66% of total toxin proteins. These results provide a foundation for comprehending the biological, ecological and evolutionary significance of venom composition of speckled rattlesnake from the Baja California peninsula.


Assuntos
Venenos de Crotalídeos , Crotalus , Animais , Venenos de Crotalídeos/metabolismo , Crotalus/metabolismo , Metaloproteases/metabolismo , México , Fosfolipases/metabolismo , Proteínas/metabolismo , Serina Proteases/metabolismo
6.
Metabolites ; 12(10)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36295838

RESUMO

Kidney diseases encompass many pathologies, including obstructive nephropathy (ON), a common clinical condition caused by different etiologies such as urolithiasis, prostatic hyperplasia in males, tumors, congenital stenosis, and others. Unilateral ureteral obstruction (UUO) in rodents is an experimental model widely used to explore the pathophysiology of ON, replicating vascular alterations, tubular atrophy, inflammation, and fibrosis development. In addition, due to the kidney's high energetic demand, mitochondrial function has gained great attention, as morphological and functional alterations have been demonstrated in kidney diseases. Here we explore the kidney mitochondrial proteome differences during a time course of 7, 14, and 21 days after the UUO in rats, revealing changes in proteins involved in three main metabolic pathways, oxidative phosphorylation (OXPHOS), the tricarboxylic acid cycle (TCA), and the fatty acid (FA) metabolism, all of them related to bioenergetics. Our results provide new insight into the mechanisms involved in metabolic adaptations triggered by the alterations in kidney mitochondrial proteome during the ON.

7.
Pharmaceutics ; 14(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015341

RESUMO

Lung cancer is, currently, one of the main malignancies causing deaths worldwide. To date, early prognostic and diagnostic markers for small cell lung cancer (SCLC) have not been systematically and clearly identified, so most patients receive standard treatment. In the present study, we combine quantitative proteomics studies and the use of magnetic core-shell nanoparticles (mCSNP's), first to identify a marker for lung cancer, and second to functionalize the nanoparticles and their possible application for early and timely diagnosis of this and other types of cancer. In the present study, we used label-free mass spectrometry in combination with an ion-mobility approach to identify 220 proteins with increased abundance in small cell lung cancer (SCLC) cell lines. Our attention was focused on cell receptors for their potential application as mCSNP's targets; in this work, we report the overexpression of Transferrin Receptor (TfR1) protein, also known as Cluster of Differentiation 71 (CD71) up to a 30-fold increase with respect to the control cell. The kinetics of endocytosis, evaluated by a flow cytometry methodology based on fluorescence quantification, demonstrated that receptors were properly activated with the transferrin supported on the magnetic core-shell nanoparticles. Our results are important in obtaining essential information for monitoring the disease and/or choosing better treatments, and this finding will pave the way for future synthesis of nanoparticles including chemotherapeutic drugs for lung cancer treatments.

8.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628184

RESUMO

Autoimmune lymphoproliferative syndrome (ALPS) is a rare disease defined as a defect in the lymphocyte apoptotic pathway. Currently, the diagnosis of ALPS is based on clinical aspects, defective lymphocyte apoptosis and mutations in Fas, FasL and Casp 10 genes. Despite this, ALPS has been misdiagnosed. The aim of this work was to go one step further in the knowledge of the disease, through a molecular and proteomic analysis of peripheral blood mononuclear cells (PBMCs) from two children, a 13-year-old girl and a 6-year-old boy, called patient 1 and patient 2, respectively, with clinical data supporting the diagnosis of ALPS. Fas, FasL and Casp10 genes from both patients were sequenced, and a sample of the total proteins from patient 1 was analyzed by label-free proteomics. Pathway analysis of deregulated proteins from PBMCs was performed on the STRING and PANTHER bioinformatics databases. A mutation resulting in an in-frame premature stop codon and protein truncation was detected in the Fas gene from patient 2. From patient 1, the proteomic analysis showed differences in the level of expression of proteins involved in, among other processes, cell cycle, regulation of cell cycle arrest and immune response. Noticeably, the most down-regulated protein is an important regulator of the cell cycle process. This could be an explanation of the disease in patient 1.


Assuntos
Síndrome Linfoproliferativa Autoimune , Adolescente , Síndrome Linfoproliferativa Autoimune/diagnóstico , Síndrome Linfoproliferativa Autoimune/genética , Criança , Feminino , Humanos , Leucócitos Mononucleares , Masculino , Mutação , Proteômica , Receptor fas/genética
9.
Pathogens ; 11(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215174

RESUMO

Sporothrix schenckii modulates the expression of its cell wall proteins (CWPs) in response to reactive oxygen species (ROS) generated by the phagocytic cells of the human host, which allows it to evade and escape the immune system. In this study, we performed a comparative proteomic analysis of the CW of S. schenckii after exposure and nonexposure to H2O2. Several CWPs involved in CW remodeling and fungal pathogenesis that modulated their expression in response to this oxidizing agent were identified, as were a number of antioxidant enzymes and atypical CWPs, called moonlighting proteins, such as the Hsp70-5, lipase 1 (Lip1), enolase (Eno), and pyruvate kinase (Pk). Moreover, RT-qPCR assays demonstrated that the transcription of genes HSP70-5, LIP1, ENO, and PK is regulated in response to the oxidant. The results indicated that S. schenckii differentially expressed CWPs to confer protection against ROS upon this fungus. Furthermore, among these proteins, antioxidant enzymes and interestingly, moonlighting-like CWPs play a role in protecting the fungus from oxidative stress (OS), allowing it to infect human host cells.

10.
J Proteomics ; 237: 104146, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588107

RESUMO

Toxoplasma gondii is one of the most successful intracellular parasites in the world. The dynamic, adhesion, invasion, and even replication capabilities of Toxoplasma are based on dynamic machinery located in the pellicle, a three membrane complex that surrounds the parasite. Among the proteins that carry out these processes are inner membrane complex (IMC) proteins, gliding-associated proteins (GAP), diverse myosins, actin, tubulin, and SRS proteins. Despite the importance of the pellicle, the knowledge of its composition is limited. Broad protein identification from an enriched pellicle fraction was obtained by independent digestion with trypsin and chymotrypsin and quantified by mass spectrometry. By trypsin digestion, 548 proteins were identified, while by chymotrypsin digestion, additional 22 proteins were identified. Besides, a group of "sequences related to SAG1" proteins (SRS) were detected together with unidentified new proteins. From identified SRS proteins, SRS51 was chosen for analysis and modeling as its similarities with crystallized adhesion proteins, exhibiting the presence of a spatial groove that is apparently involved in adhesion and cell invasion. As SRS proteins have been reported to be involved in the activation of the host's immune response, further studies could consider them as targets in the design of vaccines or of drugs against Toxoplasma. SIGNIFICANCE: To date, the proteomic composition of the pellicle of Toxoplasma is unknown. Most proteins reported in Toxoplasma pellicle have been poorly studied, and many others remain unidentified. Herein, a group of new SRS proteins is described. Some SRS proteins previously described from pellicle fraction have adhesion properties to the host cell membrane, so their study would provide data related to invasion mechanism and to open possibilities for considering them as targets in the design of immunoprotective strategies or the design of new pharmacological treatments.


Assuntos
Toxoplasma , Actinas , Membrana Celular , Proteômica , Proteínas de Protozoários
11.
Parasitol Res ; 120(3): 1067-1076, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33515065

RESUMO

Giardia intestinalis is a human parasite that causes a diarrheal disease in developing countries. G. intestinalis has a cytoskeleton (CSK) composed of microtubules and microfilaments, and the Giardia genome does not code for the canonical CSK-binding proteins described in other eukaryotic cells. To identify candidate actin and tubulin cross-linking proteins, we performed a BLAST analysis of the Giardia genome using a spectraplakins consensus sequence as a query. Based on the highest BLAST score, we selected a 259-kDa sequence designated as a cytoskeleton linker protein (CLP259). The sequence was cloned in three fragments and characterized by immunoprecipitation, confocal microscopy, and mass spectrometry (MS). CLP259 was located in the cytoplasm in the form of clusters of thick rods and colocalized with actin at numerous sites and with tubulin in the median body. Immunoprecipitation followed by mass spectrometry revealed that CLP259 interacts with structural proteins such as giardins, SALP-1, axonemal, and eight coiled-coils. The vesicular traffic proteins detected were Mu adaptin, Vacuolar ATP synthase subunit B, Bip, Sec61 alpha, NSF, AP complex subunit beta, and dynamin. These results indicate that CLP259 in trophozoites is a CSK linker protein for actin and tubulin and could act as a scaffold protein driving vesicular traffic.


Assuntos
Actinas/metabolismo , Giardia lamblia/metabolismo , Plaquinas/metabolismo , Tubulina (Proteína)/metabolismo , Actinas/química , Sequência de Aminoácidos , Animais , Anquirinas/química , Sequência de Bases , Western Blotting , Biologia Computacional , Sequência Consenso , Citoplasma/química , Citoesqueleto/química , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Dinaminas/análise , Feminino , Imunofluorescência , Giardia lamblia/química , Giardia lamblia/ultraestrutura , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Plaquinas/química , Alinhamento de Sequência , Tubulina (Proteína)/química
12.
J Am Soc Mass Spectrom ; 31(6): 1302-1312, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32379441

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease characterized by severe reproductive failure in sows, acute respiratory disorders in growing pigs, and high mortality in piglets. The causative agent of this syndrome is the PRRS virus (PRRSV), an RNA virus belonging to the Arteriviridae family. To date, several quantitative approaches of proteomics have been applied to analyze the gene expression profiles during PRRSV infection in PAMs and MARC-145 cells, and few proteins have been consistent among independent studies, probably due to the differences in the levels of virulence of different PRRSV strains used and/or due to analytical conditions. In this study, total proteins isolated from noninfected and infected MARC-145 cells with a Mexican PRRSV strain were relatively quantified using label-free based DIA approach in combination with ion-mobility separation. As a result, 1456 quantified proteins were found to be shared between the control and infected samples. Afterward, these proteins were filtered, and 699 of them were considered without change. Also, 17 proteins were up-regulated and 19 proteins were down-regulated during the PRSSV infection. Bioinformatic analysis revealed that many of the differentially expressed proteins are involved in processes like antigen processing, presentation of antigens, response to viruses, response to IFNs, and innate immune response, among others. The present work is the first one which provides a detailed proteomic analysis through label-free based DIA approach in MARC-145 cells during the infection with a Mexican PRRSV strain.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Proteoma , Proteômica/métodos , Animais , Linhagem Celular , Chlorocebus aethiops , Interações Hospedeiro-Patógeno , Espectrometria de Massas/métodos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína , Mapas de Interação de Proteínas , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Suínos
13.
Microb Pathog ; 141: 103987, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31962184

RESUMO

Sporotrichosis is an emergent subcutaneous mycosis that is a threat to both humans and other animals. Sporotrichosis is acquired by the traumatic implantation of species of the Sporothrix genus. Added to the detoxification systems, pathogenic fungi possess different mechanisms that allow them to survive within the phagocytic cells of their human host during the oxidative burst. These mechanisms greatly depend from the cell wall (CW) since phagocytic cells recognize pathogens through specific receptors associated to the structure. To date, there are no studies addressing the modulation of the expression of S. schenckii CW proteins (CWP) in response to reactive oxygen species (ROS). Therefore, in this work, a proteomic analysis of the CW of S. schenckii in response to the oxidative agent menadione (O2•-) was performed. Proteins that modulate their expression were identified which can be related to the fungal survival mechanisms within the phagocyte. Among the up-regulated CWP in response to the oxidative agent, 13 proteins that could be involved in the mechanisms of oxidative stress response in S. schenckii were identified. The proteins identified were thioredoxin1 (Trx1), superoxide dismutase (Sod), GPI-anchored cell wall protein, ß-1,3-endoglucanase EglC, glycoside hydrolase (Gh), chitinase, CFEM domain protein, glycosidase crf1, covalently-linked cell wall protein (Ccw), 30 kDa heat shock protein (Hsp30), lipase, trehalase (Treh), fructose-bisphosphate aldolase (Fba1) and citrate synthase (Cs). The identification of CWP that modulates their expression in response to superoxide ion (O2•-) in S. schenckii is a useful approach to understand how the fungus defends itself against ROS, in order to evade the phagocytic cells from the host and cause the infection.


Assuntos
Parede Celular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sporothrix , Vitamina K 3/farmacologia , Animais , Parede Celular/química , Doenças Transmissíveis Emergentes/imunologia , Doenças Transmissíveis Emergentes/microbiologia , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico , Evasão da Resposta Imune , Oxidantes/farmacologia , Estresse Oxidativo/fisiologia , Fagócitos/imunologia , Fagócitos/microbiologia , Proteômica , Sporothrix/efeitos dos fármacos , Sporothrix/genética , Sporothrix/metabolismo , Esporotricose/imunologia
14.
PLoS One ; 15(1): e0228115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31995605

RESUMO

Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors, with insulin resistance as a critical component for its development. Insulin signaling in the heart leads to Akt (also known as PKB) activation, a serine/threonine protein kinase, which regulates cardiac glucose metabolism and growth. Cardiac metabolic inflexibility, characterized by impaired insulin-induced glucose uptake and oxidation, has been reported as an early and consistent change in the heart of different models of MetS and diabetes; however, the evaluation of Akt activation has yielded variable results. Here we report in cardiomyocytes of MetS rats, diminished insulin-induced glucose uptake and Akt activation, evaluated by its impaired mobilization towards the plasma membrane and phosphorylation, and reflected in a re-distribution of its interacting proteins, assessed by label-free mass spectrometry (data are available via ProteomeXchange with identifier PXD013260). We report 45 proteins with diminished abundance in Akt complex of MetS cardiomyocytes, mainly represented by energy metabolism-related proteins, and also, 31 Akt-interacting proteins with increased abundance, which were mainly related to contraction, endoplasmic reticulum stress, and Akt negative regulation. These results emphasize the relevance of Akt in the regulation of energy metabolism in the heart and highlight Akt-interacting proteins that could be involved in the detrimental effects of MetS in the heart.


Assuntos
Insulina/farmacologia , Síndrome Metabólica/enzimologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Caveolina 3/metabolismo , Desoxiglucose/metabolismo , Ativação Enzimática/efeitos dos fármacos , Teste de Tolerância a Glucose , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos Wistar , Reprodutibilidade dos Testes
15.
Metallomics ; 12(2): 218-240, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31799578

RESUMO

Manganese is considered essential for animal growth. Manganese ions serve as cofactors to three mitochondrial enzymes: superoxide dismutase (Sod2), arginase and glutamine synthase, and to glycosyltransferases residing in the Golgi. In Drosophila melanogaster, manganese has also been implicated in the formation of ceramide phosphoethanolamine, the insect's sphingomyelin analogue, a structural component of cellular membranes. Manganese overload leads to neurodegeneration and toxicity in both humans and Drosophila. Here, we report specific absorption and accumulation of manganese during the first week of adulthood in flies, which correlates with an increase in Sod2 activity during the same period. To test the requirement of dietary manganese for this accumulation, we generated a Drosophila model of manganese deficiency. Due to the lack of manganese-specific chelators, we used chemically defined media to grow the flies and deplete them of the metal. Dietary manganese depletion reduced Sod2 activity. We then examined gene and protein expression changes in the intestines of manganese depleted flies. We found adaptive responses to the presumed loss of known manganese-dependent enzymatic activities: less glutamine synthase activity (amination of glutamate to glutamine) was compensated by 50% reduction in glutaminase (deamination of glutamine to glutamate); less glycosyltransferase activity, predicted to reduce protein glycosylation, was compensated by 30% reduction in lysosomal mannosidases (protein deglycosylating enzymes); less ceramide phosphoethanolamine synthase activity was compensated by 30% reduction in the Drosophila sphingomyeline phospodiesterase, which could catabolize ceramide phosphoethanolamine in flies. Reduced Sod2 activity, predicted to cause superoxide-dependent iron-sulphur cluster damage, resulted in cellular iron misregulation.


Assuntos
Drosophila melanogaster/fisiologia , Intestinos/fisiologia , Manganês/deficiência , Animais , Dieta , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Íons/metabolismo , Manganês/análise , RNA-Seq , Superóxido Dismutase/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
16.
J Proteomics ; 208: 103490, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31434009

RESUMO

After the cell invasion, the parasite Toxoplasma gondii locates within a parasitophorous vacuole to proliferate. It continuously modifies the composition of the parasitophorous vacuole by the secretion of GRA and ROP proteins, some of which become inserted into the vacuole membrane, remain as soluble proteins or involved in the intravacuolar network. In this report, we analyze the excretion/secretion products and the vesicles released by extracellular tachyzoites, this structures were morphologically analyzed by electron microscopy and characterized by mass spectrometry. The structural analysis showed parasites secreting in vitro individual vesicles with similarities to ectosomes and exosomes and which characterized to self-assembly in vitro forming vesicle-tubular structures morphologically similar to the intravacuolar network from infected cells. The vesicle-tubular structures were recognized with antibodies against ROP2 and GRA2. In addition, analysis by Western blot evidenced proteins from the secretory organelles. A detailed proteomic analysis of exosomes, ectosomes and soluble proteins released in vitro is here reported. Presence of GRA proteins in secretions from resting extracellular parasites indicates that these molecules are not exclusively secreted within the parasitophorous vacuole of the infected cell as reported but they are constitutively excreted/secreted even in an extracellular condition. Data are available via ProteomeXchange with identifier PXD013767. SIGNIFICANCE: Extracellular tachyzoites constitutively secrete components that previously were considered be secreted only within the parasitophorous vacuole, suggesting that in the infected host these molecules are in direct interaction with cells and molecules of the host cell including those of the immune response.


Assuntos
Bases de Dados de Proteínas , Proteômica , Proteínas de Protozoários/metabolismo , Vesículas Secretórias/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C
17.
Parasitol Res ; 118(6): 1899-1918, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30949853

RESUMO

After host cell invasion, Toxoplasma secretes a variety of dense granule proteins (GRA proteins) from its secretory dense granules, which are involved in the biogenesis of the parasitophorous vacuole (PV). TgGRA8I is predicted to contain proline-rich domains, which are structural features of some cytoskeleton-related proteins. In agreement with this observation, previous proteomic analyses revealed the presence of TgGRA8I in the Toxoplasma sub-pellicular cytoskeleton. In the present study, we show (1) by docking analyses that TgGRA8I may interact with both Toxoplasma ß-tubulin and actin; (2) by immunoelectron microscopy, proteomic, biochemical, and cellular approaches that TgGRA8I associates with sub-pellicular microtubules and actin at the parasite sub-pellicular cytoskeleton; (3) that type I parasites (RH strain) lacking the GRA8 gene (RHΔku80Δgra8) exhibit loss of conoid extrusion, diminished cell infection, and egress capabilities, and that these motility impairments were likely due to important alterations in their sub-pellicular cytoskeleton, in particular their sub-pellicular microtubules and meshwork. Parasites lacking the GRA4 gene (RHΔku80Δgra4) did not show modifications in the organization of the sub-pellicular cytoskeleton. Collectively, these results demonstrated that TgGRA8I is a dense granule protein that, besides its role in the formation of the PV, contributes to the organization of the parasite sub-pellicular cytoskeleton and motility. This is the first proline-rich protein described in the Toxoplasma cytoskeleton, which is a key organelle for both the parasite motility and the invasion process. Knowledge about the function of cytoskeleton components in Toxoplasma is fundamental to understand the motility process and the host cell invasion mechanism. Refining this knowledge should lead to the design of novel pharmacological strategies for the treatment against toxoplasmosis.


Assuntos
Actinas/metabolismo , Antígenos de Protozoários/metabolismo , Movimento Celular/genética , Citoesqueleto/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Tubulina (Proteína)/metabolismo , Animais , Antígenos de Protozoários/genética , Transporte Biológico , Microscopia Imunoeletrônica , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Proteômica , Proteínas de Protozoários/genética , Vesículas Secretórias/metabolismo , Toxoplasma/genética , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Vacúolos/parasitologia
18.
Parasitol Res ; 118(1): 289-306, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30506516

RESUMO

Toxoplasma gondii can infect all nucleated cells from warm-blooded organisms. After infection, Toxoplasma spreads throughout the body and migrates across biological barriers, such as the intestinal and blood-brain barriers, as well as the placenta in pregnant women. The mechanisms for parasite dissemination are still unknown; however, proteases could play a role as a virulence factor. The aim of this study was to detect and to characterize proteases in whole-cell extracts and in excretion/secretion products from tachyzoites of the RH strain isolated from infected mice. Both fractions were analyzed by gelatin and casein zymography and by azocasein degradation. The biochemical characterization of proteases included standardization of optimal conditions for their activation, such as pH, the presence of cofactors, and a reducing agent. In both fractions, we detected at least nine gelatin-degrading metalloproteases in the range of 50 to 290 kDa. The proteases present in the excretion/secretion products were found as soluble proteins and not associated with exosome-like vesicles or other secretory vesicles. Moreover, by using casein zymography, it was possible to detect three serine proteases. Exposure of MDCK cells to excretion/secretion products modified the organization of the cell monolayer, and this effect was reverted after washing thoroughly with PBS and inhibition by metalloprotease and serine protease inhibitors. Proteomic analysis of excretion/secretion products identified 19 proteases. These findings suggest that tachyzoites of a highly virulent strain of Toxoplasma use a battery of proteases to modify the epithelium, probably as a strategy to facilitate their tissue dissemination.


Assuntos
Células Epiteliais/parasitologia , Metaloproteases/metabolismo , Proteínas de Protozoários/metabolismo , Serina Proteases/metabolismo , Toxoplasma/enzimologia , Toxoplasmose/parasitologia , Animais , Feminino , Humanos , Metaloproteases/genética , Camundongos , Gravidez , Proteômica , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
Nutrients ; 10(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899291

RESUMO

Phycobiliproteins of Arthrospira (Spirulina) maxima have attracted attention because of their potential therapeutic antioxidant properties. The aim of this study was to assess the possible antiulcerogenic activity of these phycobiliproteins (ExPhy) against ethanol-induced gastric ulcers in rats. To explore the possible mechanisms of action, we examined antioxidant defense enzymes (e.g., catalase, superoxide dismutase, and glutathione peroxidase), as well as the level of lipid peroxidation (MDA) and the histopathological changes in the gastric mucosa. Intragastric administration of ExPhy (100, 200, and 400 mg/kg body weight) significantly lowered the ulcer index value compared to the ulcer control group (p < 0.05). The greatest protection was provided by the concentration of 400 mg/kg. The histological study supported the observed gastroprotective activity of ExPhy, showing a reduced inflammatory response. Moreover, the alcohol-induced decrease in stomach antioxidant enzyme activity found in the ulcer control group was prevented by ExPhy pretreatment. Furthermore, ExPhy reversed the ethanol-induced increase in lipid peroxidation. In summary, the antiulcerogenic potential of ExPhy may be due, at least in part, to its anti-oxidant and anti-inflammatory effects.


Assuntos
Antiulcerosos/farmacologia , Etanol , Mucosa Gástrica/efeitos dos fármacos , Ficobiliproteínas/farmacologia , Spirulina/química , Úlcera Gástrica/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Antiulcerosos/isolamento & purificação , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Citoproteção , Modelos Animais de Doenças , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ficobiliproteínas/isolamento & purificação , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patologia
20.
Photosynth Res ; 138(1): 39-56, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29943359

RESUMO

Synechococcus ATCC 29403 (PCC 7335) is a unicellular cyanobacterium isolated from Puerto Peñasco, Sonora Mexico. This cyanobacterium performs complementary chromatic acclimation (CCA), far-red light photoacclimation (FaRLiP), and nitrogen fixation. The Synechococcus PCC 7335 genome contains at least 31 genes for proteins of the phycobilisome (PBS). Nine constitutive genes were expressed when cells were grown under white or red lights and the resulting proteins were identified by mass spectrometry in isolated PBS. Five inducible genes were expressed under white light, and phycoerythrin subunits and associated linker proteins were detected. The proteins of five inducible genes expressed under red light were identified, the induced phycocyanin subunits, two rod linkers and the rod-capping linker. The five genes for FaRLiP phycobilisomes were expressed under far-red light together with the apcF gene, and the proteins were identified by mass spectrometry after isoelectric focusing and SDS-PAGE. Based on in silico analysis, Phylogenetic trees, and the observation of a highly conserved amino acid sequence in far-red light absorbing alpha allophycoproteins encoded by FaRLiP gene cluster, we propose a new nomenclature for the genes. Based on a ratio of ApcG2/ApcG3 of six, a model with the arrangement of the allophycocyanin trimers of the core is proposed.


Assuntos
Proteínas de Bactérias/genética , Ficobilissomas/metabolismo , Synechococcus/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Simulação por Computador , Eletroforese em Gel de Poliacrilamida/métodos , Genoma Bacteriano , Luz , Espectrometria de Massas , Modelos Biológicos , Ficobilinas/metabolismo , Ficobilissomas/genética , Ficocianina/genética , Ficocianina/metabolismo , Ficoeritrina/genética , Ficoeritrina/metabolismo , Proteômica/métodos , Synechococcus/metabolismo , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA