Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astron Astrophys ; 6152018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30185990

RESUMO

CONTEXT: In bright photodissociation regions (PDRs) associated to massive star formation, the presence of dense "clumps" that are immersed in a less dense interclump medium is often proposed to explain the difficulty of models to account for the observed gas emission in high-excitation lines. AIMS: We aim at presenting a comprehensive view of the modeling of the CO rotational ladder in PDRs, including the high-J lines that trace warm molecular gas at PDR interfaces. METHODS: We observed the 12CO and 13CO ladders in two prototypical PDRs, the Orion Bar and NGC 7023 NW using the instruments onboard Herschel. We also considered line emission from key species in the gas cooling of PDRs (C+, O, H2) and other tracers of PDR edges such as OH and CH+. All the intensities are collected from Herschel observations, the literature and the Spitzer archive and are analyzed using the Meudon PDR code. RESULTS: A grid of models was run to explore the parameter space of only two parameters: thermal gas pressure and a global scaling factor that corrects for approximations in the assumed geometry. We conclude that the emission in the high-J CO lines, which were observed up to J up =23 in the Orion Bar (J up =19 in NGC 7023), can only originate from small structures of typical thickness of a few 10-3 pc and at high thermal pressures (Pth ~ 108 K cm-3). CONCLUSIONS: Compiling data from the literature, we found that the gas thermal pressure increases with the intensity of the UV radiation field given by G0, following a trend in line with recent simulations of the photoevaporation of illuminated edges of molecular clouds. This relation can help rationalising the analysis of high-J CO emission in massive star formation and provides an observational constraint for models that study stellar feedback on molecular clouds.

2.
Astrophys J ; 812(1)2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26568638

RESUMO

We present the first ~7.5'×11.5' velocity-resolved (~0.2 km s-1) map of the [C ii] 158 µm line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C ii] luminosity (~85 %) is from the extended, FUV-illuminated face of the cloud (G0>500, nH>5×103 cm-3) and from dense PDRs (G≳104, nH≳105 cm-3) at the interface between OMC 1 and the H ii region surrounding the Trapezium cluster. Around ~15 % of the [C ii] emission arises from a different gas component without CO counterpart. The [C ii] excitation, PDR gas turbulence, line opacity (from [13C ii]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[C ii]/LFIR and LFIR/MGas ratios and show that L[C ii]/LFIR decreases from the extended cloud component (~10-2-10-3) to the more opaque star-forming cores (~10-3-10-4). The lowest values are reminiscent of the "[C ii] deficit" seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C ii]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C ii] emitting column relative to the total dust column along each line of sight is responsible for the observed L[C ii]/LFIR variations through the cloud.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...