Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nephron ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301618

RESUMO

INTRODUCTION: ob/ob mice are a leptin-deficient type 2 diabetes mellitus model, which, on a BTBR background, mimics glomerular pathophysiology of diabetic nephropathy (DN). Since leptin deficiency reduces blood pressure (BP), and endothelial nitric oxide synthase (eNOS) lowers BP and is kidney protective, we attempted to develop a more robust DN model by introducing eNOS deficiency in BTBR ob/ob mice. METHODS: Six experimental groups included littermate male and female BTBR ob/ob or wild-type for ob (control) as well as wild-type (WT), heterozygote (HET) or knockout (KO) for eNOS. Systolic BP (by automated tail-cuff) and GFR (by FITC sinistrin plasma kinetics) were determined in awake mice at 27-30 weeks of age followed by molecular and histological kidney analyses. RESULTS: Male and female ob/ob WT presented hyperglycemia and larger body and kidney weight, GFR, glomerular injury, and urine albumin to creatinine ratio (UACR) despite modestly lower BP vs control WT. These effects were associated with higher tubular injury score and renal mRNA expression of NGAL only in males, whereas female ob/ob WT unexpectedly had lower KIM-1 and COL1A1 expression vs control WT, indicating sex differences. HET for eNOS did not consistently alter BP or renal outcome in control or ob/ob. In comparison, eNOS KO increased BP (15-25 mmHg) and worsened renal markers of injury, inflammation and fibrosis, GFR, UACR, and survival rates, as observed in control and, more pronounced, in ob/ob mice and independent of sex. CONCLUSIONS: Deletion, but not heterozygosity, of eNOS raises blood pressure and aggravates nephropathy in BTBR ob/ob mice.

2.
J Am Chem Soc ; 145(38): 20825-20836, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37589185

RESUMO

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.


Assuntos
Ácido 2-Aminoadípico , Aldeídos , Camundongos , Animais , Ácido 2-Aminoadípico/química , Imageamento por Ressonância Magnética , Pulmão
3.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131719

RESUMO

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small molecule magnetic resonance (MR) probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis noninvasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, make them strong candidates for clinical translation.

4.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752209

RESUMO

Acute kidney failure and chronic kidney disease are global health issues steadily rising in incidence and prevalence. Animal models on a single genetic background have so far failed to recapitulate the clinical presentation of human nephropathies. Here, we used a simple model of folic acid-induced kidney injury in 7 highly diverse mouse strains. We measured plasma and urine parameters, as well as renal histopathology and mRNA expression data, at 1, 2, and 6 weeks after injury, covering the early recovery and long-term remission. We observed an extensive strain-specific response ranging from complete resistance of the CAST/EiJ to high sensitivity of the C57BL/6J, DBA/2J, and PWK/PhJ strains. In susceptible strains, the severe early kidney injury was accompanied by the induction of mitochondrial stress response (MSR) genes and the attenuation of NAD+ synthesis pathways. This is associated with delayed healing and a prolonged inflammatory and adaptive immune response 6 weeks after insult, heralding a transition to chronic kidney disease. Through a thorough comparison of the transcriptomic response in mouse and human disease, we show that critical metabolic gene alterations were shared across species, and we highlight the PWK/PhJ strain as an emergent model of transition from acute kidney injury to chronic disease.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , NAD , Camundongos Endogâmicos DBA
5.
Artigo em Inglês | MEDLINE | ID: mdl-36767822

RESUMO

(1) Background: The purpose of this study was to evaluate parent perception of behavior and level of cooperation to determine the success of a dental appointment with a child with autism spectrum disorder (ASD). (2) Methods: pre-treatment form, task analysis (TAS), and Frankl scale scores were extracted from patient charts. Values were calculated for patient demographics and other health characteristics (N = 235). Regression models were constructed to examine the success level during the first dental appointment (measured by TAS and Frankl scores) by several factors. (3) Results: The model to test patient characteristics: age, gender, ethnicity, and verbal communication, Hispanic ethnicity significantly predicted the TAS score, F (4, 191) = 2.45, p = 0.03 [95% CI -17.18, -3.53], and age significantly predicted the Frankl score, F (4, 194) = 5.17, p = 0.00 [95% CI 0.04, 0.12]. There was a significant association between parent perception of behavior and Frankl scores, F (2, 202) = 7.68, p = 0.00 [ 95% CI -0.11, -0.02]. (4) Conclusion: The results indicate that ethnicity and age play a role in successful outcomes during the dental appointment. Additionally, parent perception of their child's behavior significantly predicted the Frankl score, thus coordinating with parents during the dental appointment can be a key factor in treatment planning for productive dental visits.


Assuntos
Transtorno do Espectro Autista , Humanos , Criança , Estudos Transversais , Comportamento Infantil , Comunicação , Percepção
6.
Phytochemistry ; 203: 113412, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36055428

RESUMO

The pod husk of Theobroma cacao (CPH) plays an important agronomical role, as its appearance is used as indicator of ripening, guiding the farmers in the harvest process. Cacao harvesting is not a standardized practice because farmers harvest between six up to eight months from flowering, guided by pod's color and shape. The mixture of cacao beans from different ripening stages (RS), negatively affecting the quality and price of grain. A way to help the farmers in the harvest standardization could be through the use of chemical markers and visual indicators of CPH ripening. This study analyses CPH's metabolic distribution of two cacao clones, ICS95 and CCN51 at six, seven, and eight months of ripening. Untargeted metabolomics was done using HPLC-MS/MS for biomarker discovery and association to cacao ripening. The results indicated a strong metabolic differentiation of the sixth month with the rest of the months independent of the variety. Also, metabolic differences were found between cacao clones for the seventh and eighth month. We annotated five potential biochemical markers including 3-caffeoylpelargodinin 5-glucoside, indoleacetaldehyde, procyanidin A dimer, procyanidin C1, and kaempferol. We further looked for correlation between patterns of progression of our markers against quantitative indicators of CPH appearance and texture, at the same ripening stages. We also performed a functional analysis and three possible metabolic pathways: flavone and flavonol biosynthesis, flavonoid biosynthesis, and tryptophan metabolism were identified associated with stress sensing, plant development and defense respectively. We found significant and positive correlations between green color density and all metabolites. For texture, the correlations were significantly negative with all metabolites. Our results suggest that about the sixth month is appropriate for harvesting cacao in the region of Caldas, Colombia in order to avoid all the metabolic variations occurring at later stages of ripening which impact the cacao bean quality. Therefore, studying the cacao ripening process can help in the estimation of the best harvest time and contribute to the standardization of harvest practices.


Assuntos
Cacau , Flavonas , Proantocianidinas , Cacau/metabolismo , Flavonas/metabolismo , Flavonoides/metabolismo , Frutas/metabolismo , Glucosídeos/metabolismo , Quempferóis/metabolismo , Metabolômica , Espectrometria de Massas em Tandem , Triptofano
7.
Mol Cell Endocrinol ; 529: 111257, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33781839

RESUMO

The observation that all components of the renin angiotensin system (RAS) are expressed in the kidney and the fact that intratubular angiotensin (Ang) II levels greatly exceed the plasma concentration suggest that the synthesis of renal Ang II occurs independently of the circulating RAS. One of the main components of this so-called intrarenal RAS is angiotensin-converting enzyme (ACE). Although the role of ACE in renal disease is demonstrated by the therapeutic effectiveness of ACE inhibitors in treating several conditions, the exact contribution of intrarenal versus systemic ACE in renal disease remains unknown. Using genetically modified mouse models, our group demonstrated that renal ACE plays a key role in the development of several forms of hypertension. Specifically, although ACE is expressed in different cell types within the kidney, its expression in renal proximal tubular cells is essential for the development of high blood pressure. Besides hypertension, ACE is involved in several other renal diseases such as diabetic kidney disease, or acute kidney injury even when blood pressure is normal. In addition, studies suggest that ACE might mediate at least part of its effect through mechanisms that are independent of the Ang I conversion into Ang II and involve other substrates such as N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), Ang-(1-7), and bradykinin, among others. In this review, we summarize the recent advances in understanding the contribution of intrarenal ACE to different pathological conditions and provide insight into the many roles of ACE besides the well-known synthesis of Ang II.


Assuntos
Injúria Renal Aguda/enzimologia , Angiotensina I/metabolismo , Nefropatias Diabéticas/enzimologia , Hipertensão/enzimologia , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina/genética , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Angiotensina I/genética , Angiotensina II/genética , Angiotensina II/metabolismo , Animais , Pressão Sanguínea/genética , Bradicinina/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Regulação da Expressão Gênica , Humanos , Hipertensão/genética , Hipertensão/patologia , Rim/enzimologia , Rim/patologia , Camundongos , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/genética , Peptidil Dipeptidase A/genética , Transdução de Sinais , Equilíbrio Hidroeletrolítico/genética
8.
J Biol Chem ; 295(10): 3115-3133, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32005658

RESUMO

The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the Klotho gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and ß-glucuronidase assays in vitro and distinct properties in vivo Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual N-glycan structure consisting of N,N'-di-N-acetyllactose diamine at multiple N-linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated N-glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.


Assuntos
Glucuronidase/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Células CHO , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Fator de Crescimento de Fibroblastos 23 , Taxa de Filtração Glomerular/efeitos dos fármacos , Glucuronidase/química , Glucuronidase/genética , Glicopeptídeos/análise , Células HEK293 , Meia-Vida , Humanos , Proteínas Klotho , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/veterinária , Relação Estrutura-Atividade
9.
Phys Rev Lett ; 123(24): 247001, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922834

RESUMO

Recent nuclear magnetic resonance studies [A. Pustogow et al., Nature 574, 72 (2019)] have challenged the prevalent chiral triplet pairing scenario proposed for Sr_{2}RuO_{4}. To provide guidance from microscopic theory as to which other pair states might be compatible with the new data, we perform a detailed theoretical study of spin fluctuation mediated pairing for this compound. We map out the phase diagram as a function of spin-orbit coupling, interaction parameters, and band structure properties over physically reasonable ranges, comparing when possible with photoemission and inelastic neutron scattering data information. We find that even-parity pseudospin singlet solutions dominate large regions of the phase diagram, but in certain regimes spin-orbit coupling favors a near-nodal odd-parity triplet superconducting state, which is either helical or chiral depending on the proximity of the γ band to the van Hove points. A surprising near degeneracy of the nodal s^{'} and d_{x^{2}-y^{2}} wave solutions leads to the possibility of a near-nodal time-reversal symmetry broken s^{'}+id_{x^{2}-y^{2}} pair state. Predictions for the temperature dependence of the Knight shift for fields in and out of plane are presented for all states.

10.
J Dairy Sci ; 102(1): 799-810, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30391171

RESUMO

The objective of this prospective field study was to evaluate the effects of extending the lactation period on various reproductive measurements of high-yielding Holstein cows. On 40 d in milk (DIM), cows were gynecologically examined (transrectal palpation, sonography, vaginoscopy). Cows without signs of clinical endometritis were blocked by parity and were randomly allocated to 1 of 3 experimental groups with a voluntary waiting period (VWP) of 40, 120, and 180 d, respectively (G40, n = 135; G120, n = 141; G180, n = 139). Cows of G120 and G180 were reexamined at the end of the VWP. If natural estrus was detected within 46 d after the end of the VWP, an artificial insemination was performed. If no estrus was detected, the respective cows were synchronized by applying the classical Ovsynch protocol. We found no difference in the proportion of cows in which estrus was detected between 40 to 86 DIM or in the days to first estrus between the 3 groups. Estrus detection in this period was lower in cows with body condition score <3 on 90 DIM compared with body condition score ≥3 (61.5 vs. 76.0%) and in cows with high energy-corrected milk production (ECM) on 92 DIM [58.6 vs. 70.1%, for cows with higher and lower than the median (39.9 kg) ECM, respectively]. The proportion of cows that estrus was detected within 46 d after the VWP was greater in G120 (88.9%) and G180 (90.8%) compared with G40 (70.4%). These effects were more apparent in cows with high ECM. The rate of estrus detection and of becoming pregnant in this period was greater for G120 (hazard ratio = 2.2 and 1.6, respectively) and for G180 (hazard ratio = 2.4 and 1.8) compared with G40. Cows in both groups with extended lactation had greater overall first service conception rates (G120 = 48.9%; G180 = 49.6%) and a lower number of services per pregnant cow (G120 = 1.56 ± 0.1; G180 = 1.51 ± 0.1) compared with G40 (36.6%; 1.77 ± 0.1). We observed no difference in pregnancy loss or in the proportion of cows culled up to 305 d of lactation between the 3 groups. The number of Ovsynch protocols per 1,000,000 kg of ECM was reduced by 75% in G180 and by 74% in G120 compared with G40 (5.9 vs. 7.1 vs. 25.1). In conclusion, extending the lactation of dairy cows can improve main reproductive measurements in high-yielding cows.


Assuntos
Bovinos/fisiologia , Lactação , Reprodução , Animais , Bovinos/sangue , Estro/sangue , Detecção do Estro , Sincronização do Estro/métodos , Feminino , Fertilização , Inseminação Artificial/veterinária , Leite/metabolismo , Paridade , Gravidez , Estudos Prospectivos
11.
J Am Soc Nephrol ; 29(10): 2546-2561, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30185469

RESUMO

BACKGROUND: Recent evidence emphasizes the critical role of inflammation in the development of diabetic nephropathy. Angiotensin-converting enzyme (ACE) plays an active role in regulating the renal inflammatory response associated with diabetes. Studies have also shown that ACE has roles in inflammation and the immune response that are independent of angiotensin II. ACE's two catalytically independent domains, the N- and C-domains, can process a variety of substrates other than angiotensin I. METHODS: To examine the relative contributions of each ACE domain to the sodium retentive state, renal inflammation, and renal injury associated with diabetic kidney disease, we used streptozotocin to induce diabetes in wild-type mice and in genetic mouse models lacking either a functional ACE N-domain (NKO mice) or C-domain (CKO mice). RESULTS: In response to a saline challenge, diabetic NKO mice excreted 32% more urinary sodium compared with diabetic wild-type or CKO mice. Diabetic NKO mice also exhibited 55% less renal epithelial sodium channel cleavage (a marker of channel activity), 55% less renal IL-1ß, 53% less renal TNF-α, and 53% less albuminuria than diabetic wild-type mice. This protective phenotype was not associated with changes in renal angiotensin II levels. Further, we present evidence that the anti-inflammatory tetrapeptide N-acetyl-seryl-asparyl-lysyl-proline (AcSDKP), an ACE N-domain-specific substrate that accumulates in the urine of NKO mice, mediates the beneficial effects observed in the NKO. CONCLUSIONS: These data indicate that increasing AcSDKP by blocking the ACE N-domain facilitates sodium excretion and ameliorates diabetic kidney disease independent of intrarenal angiotensin II regulation.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/deficiência , Substituição de Aminoácidos , Angiotensina II/metabolismo , Animais , Domínio Catalítico/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Canais Epiteliais de Sódio/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Natriurese/genética , Natriurese/fisiologia , Oligopeptídeos/antagonistas & inibidores , Oligopeptídeos/metabolismo , Peptidil Dipeptidase A/genética , Domínios Proteicos , Sistema Renina-Angiotensina/fisiologia
12.
Phys Rev Lett ; 120(3): 037003, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400495

RESUMO

We present detailed neutron scattering studies of the static and dynamic stripes in an optimally doped high-temperature superconductor, La_{2}CuO_{4+y}. We observe that the dynamic stripes do not disperse towards the static stripes in the limit of vanishing energy transfer. Therefore, the dynamic stripes observed in neutron scattering experiments are not the Goldstone modes associated with the broken symmetry of the simultaneously observed static stripes, and the signals originate from different domains in the sample. These observations support real-space electronic phase separation in the crystal, where the static stripes in one phase are pinned versions of the dynamic stripes in the other, having slightly different periods. Our results explain earlier observations of unusual dispersions in underdoped La_{2-x}Sr_{x}CuO_{4} (x=0.07) and La_{2-x}Ba_{x}CuO_{4} (x=0.095).

13.
Am J Physiol Renal Physiol ; 314(4): F531-F542, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187372

RESUMO

Diabetic nephropathy is a major cause of end-stage renal disease in developed countries. While angiotensin-converting enzyme (ACE) inhibitors are used to treat diabetic nephropathy, how intrarenal ACE contributes to diabetic renal injury is uncertain. Here, two mouse models with different patterns of renal ACE expression were studied to determine the specific contribution of tubular vs. glomerular ACE to early diabetic nephropathy: it-ACE mice, which make endothelial ACE but lack ACE expression by renal tubular epithelium, and ACE 3/9 mice, which lack endothelial ACE and only express renal ACE in tubular epithelial cells. The absence of endothelial ACE normalized the glomerular filtration rate and endothelial injury in diabetic ACE 3/9 mice. However, these mice developed tubular injury and albuminuria and displayed low renal levels of megalin that were similar to those observed in diabetic wild-type mice. In diabetic it-ACE mice, despite hyperfiltration, the absence of renal tubular ACE greatly reduced tubulointerstitial injury and albuminuria and increased renal megalin expression compared with diabetic wild-type and diabetic ACE 3/9 mice. These findings demonstrate that endothelial ACE is a central regulator of the glomerular filtration rate while tubular ACE is a key player in the development of tubular injury and albuminuria. These data suggest that tubular injury, rather than hyperfiltration, is the main cause of microalbuminuria in early diabetic nephropathy.


Assuntos
Albuminúria/enzimologia , Diabetes Mellitus Experimental/enzimologia , Nefropatias Diabéticas/enzimologia , Túbulos Renais/enzimologia , Peptidil Dipeptidase A/metabolismo , Albuminúria/genética , Albuminúria/patologia , Albuminúria/fisiopatologia , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Células Endoteliais/enzimologia , Taxa de Filtração Glomerular , Glomérulos Renais/enzimologia , Glomérulos Renais/fisiopatologia , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Knockout , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , RNA Interferente Pequeno/genética , Estreptozocina
14.
Mol Psychiatry ; 23(4): 1084-1090, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28397842

RESUMO

Accumulating mental-health research encourages a shift in focus toward transdiagnostic dimensional features that are shared across categorical disorders. In support of this shift, recent studies have identified a general liability factor for psychopathology-sometimes called the 'p factor'- that underlies shared risk for a wide range of mental disorders. Identifying neural correlates of this general liability would substantiate its importance in characterizing the shared origins of mental disorders and help us begin to understand the mechanisms through which the 'p factor' contributes to risk. Here we believe we first replicate the 'p factor' using cross-sectional data from a volunteer sample of 1246 university students, and then using high-resolution multimodal structural neuroimaging, we demonstrate that individuals with higher 'p factor' scores show reduced structural integrity of white matter pathways, as indexed by lower fractional anisotropy values, uniquely within the pons. Whole-brain analyses further revealed that higher 'p factor' scores are associated with reduced gray matter volume in the occipital lobe and left cerebellar lobule VIIb, which is functionally connected with prefrontal regions supporting cognitive control. Consistent with the preponderance of cerebellar afferents within the pons, we observed a significant positive correlation between the white matter integrity of the pons and cerebellar gray matter volume associated with higher 'p factor' scores. The results of our analyses provide initial evidence that structural alterations in corticocerebellar circuitry supporting core functions related to the basic integration, coordination and monitoring of information may contribute to a general liability for common mental disorders.


Assuntos
Cerebelo/diagnóstico por imagem , Transtornos Mentais/diagnóstico por imagem , Neuroimagem/métodos , Adulto , Anisotropia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino , Vias Neurais , Fatores de Risco , Substância Branca/diagnóstico por imagem , Adulto Jovem
15.
Blood ; 130(3): 328-339, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28515091

RESUMO

Angiotensin-converting enzyme (ACE) inhibitors are widely used to reduce blood pressure. Here, we examined if an ACE is important for the antibacterial effectiveness of neutrophils. ACE knockout mice or mice treated with an ACE inhibitor were more susceptible to bacterial infection by methicillin-resistant Staphylococcus aureus (MRSA). In contrast, mice overexpressing ACE in neutrophils (NeuACE mice) have increased resistance to MRSA and better in vitro killing of MRSA, Pseudomonas aeruginosa, and Klebsiella pneumoniae ACE overexpression increased neutrophil production of reactive oxygen species (ROS) following MRSA challenge, an effect independent of the angiotensin II AT1 receptor. Specifically, as compared with wild-type (WT) mice, there was a marked increase of superoxide generation (>twofold, P < .0005) in NeuACE neutrophils following infection, whereas ACE knockout neutrophils decreased superoxide production. Analysis of membrane p47-phox and p67-phox indicates that ACE increases reduced NAD phosphate oxidase activity but does not increase expression of these subunits. Increased ROS generation mediates the enhanced bacterial resistance of NeuACE mice because the enhanced resistance is lost with DPI (an inhibitor of ROS production by flavoenzymes) inhibition. NeuACE granulocytes also have increased neutrophil extracellular trap formation and interleukin-1ß release in response to MRSA. In a mouse model of chemotherapy-induced neutrophil depletion, transfusion of ACE-overexpressing neutrophils was superior to WT neutrophils in treating MRSA infection. These data indicate a previously unknown function of ACE in neutrophil antibacterial defenses and suggest caution in the treatment of certain individuals with ACE inhibitors. ACE overexpression in neutrophils may be useful in boosting the immune response to antibiotic-resistant bacterial infection.


Assuntos
Resistência à Doença/genética , Imunidade Inata , Neutrófilos/imunologia , Peptidil Dipeptidase A/imunologia , Infecções Estafilocócicas/imunologia , Superóxidos/imunologia , Animais , Membrana Celular , Armadilhas Extracelulares/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Klebsiella pneumoniae , Masculino , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/imunologia , Camundongos , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Neutrófilos/citologia , Neutrófilos/transplante , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Pseudomonas aeruginosa , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/imunologia , Transdução de Sinais , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Superóxidos/metabolismo
16.
Kidney Int ; 91(4): 856-867, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27988209

RESUMO

Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension.


Assuntos
Pressão Arterial , Hipertensão/enzimologia , Túbulos Renais/enzimologia , NG-Nitroarginina Metil Éster , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina , Cloreto de Sódio na Dieta , Angiotensina II/metabolismo , Animais , Modelos Animais de Doenças , Canais Epiteliais de Sódio/metabolismo , Regulação Enzimológica da Expressão Gênica , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Túbulos Renais/fisiopatologia , Fígado/enzimologia , Camundongos Transgênicos , Natriurese , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Eliminação Renal , Sistema Renina-Angiotensina/genética , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Fatores de Tempo
17.
F1000Res ; 52016.
Artigo em Inglês | MEDLINE | ID: mdl-27018193

RESUMO

Angiotensin-converting enzyme (ACE) converts angiotensin I to the vasoconstrictor angiotensin II and thereby plays an important role in blood pressure control. However, ACE is relatively non-specific in its substrate specificity and cleaves many other peptides. Recent analysis of mice overexpressing ACE in monocytes, macrophages, and other myelomonocytic cells shows that these animals have a marked increase in resistance to experimental melanoma and to infection by Listeria monocytogenes or methicillin-resistant Staphylococcus aureus (MRSA). Several other measures of immune responsiveness, including antibody production, are enhanced in these animals. These studies complement a variety of studies indicating an important role of ACE in the immune response.

18.
Hypertension ; 66(3): 534-42, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150439

RESUMO

Recent evidence indicates that salt-sensitive hypertension can result from a subclinical injury that impairs the kidneys' capacity to properly respond to a high-salt diet. However, how this occurs is not well understood. Here, we showed that although previously salt-resistant wild-type mice became salt sensitive after the induction of renal injury with the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride; mice lacking renal angiotensin-converting enzyme, exposed to the same insult, did not become hypertensive when faced with a sodium load. This is because the activity of renal angiotensin-converting enzyme plays a critical role in (1) augmenting the local pool of angiotensin II and (2) the establishment of the antinatriuretic state via modulation of glomerular filtration rate and sodium tubular transport. Thus, this study demonstrates that the presence of renal angiotensin-converting enzyme plays a pivotal role in the development of salt sensitivity in response to renal injury.


Assuntos
Injúria Renal Aguda/metabolismo , Rim/metabolismo , Peptidil Dipeptidase A/metabolismo , Cloreto de Sódio na Dieta , Injúria Renal Aguda/induzido quimicamente , Angiotensina II/metabolismo , Animais , Modelos Animais de Doenças , Hipertensão/metabolismo , Camundongos , Camundongos Transgênicos , NG-Nitroarginina Metil Éster , Peptidil Dipeptidase A/genética
19.
Curr Opin Pharmacol ; 21: 73-81, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616034

RESUMO

Hypertension is a major risk factor for cardiovascular disease. While the cause of hypertension is multifactorial, renal dysregulation of salt and water excretion is a major factor. All components of the renin-angiotensin system are produced locally in the kidney, suggesting that intrarenal generation of angiotensin II plays a key role in blood pressure regulation. Here, we show that two mouse models lacking renal angiotensin converting enzyme (ACE) are protected against angiotensin II and l-NAME induced hypertension. In response to hypertensive stimuli, mice lacking renal ACE do not produce renal angiotensin II. These studies indicate that the intrarenal renin-angiotensin system works as an entity separate from systemic angiotensin II generation. Renal ACE appears necessary for experimental hypertension.


Assuntos
Angiotensina II/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Animais , Humanos , Peptidil Dipeptidase A/metabolismo , Sistema Renina-Angiotensina/fisiologia
20.
Curr Hypertens Rep ; 16(9): 477, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25097114

RESUMO

The existence of a complete and functional renin-angiotensin system along the nephron is widely recognized. However, its precise role in blood pressure control and, by extension, hypertension is still uncertain. While most investigators agree that overexpressing RAS components along the nephron results in hypertension, two important issues remain: whether the local RAS works as a separate entity or represents an extension of the systemic RAS and whether locally generated angiotensin II has specific renal effects on blood pressure that are distinct from systemic angiotensin II. This review addresses these issues while emphasizing the unique role of local angiotensin II in the response of the kidney to hypertensive stimuli and the induction of hypertension.


Assuntos
Angiotensina II/biossíntese , Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Rim/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Humanos , Hipertensão/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...