Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769734

RESUMO

Three nominal species of the killifish genus Aplocheilus are reported from the lowlands of Sri Lanka. Two of these, Aplocheilus dayi and Aplocheilus werneri, are considered endemic to the island, whereas Aplocheilus parvus is reported from both Sri Lanka and Peninsular India. Here, based on a collection from 28 locations in Sri Lanka, also including a dataset of Asian Aplocheilus downloaded from GenBank, we present a phylogeny constructed from the mitochondrial cytochrome b (cytb), mitochondrial cytochrome c oxidase subunit 1 (cox1), and nuclear recombination activating protein 1 (rag1), and investigate the interrelationships of the species of Aplocheilus in Sri Lanka. The endemic Sri Lankan aplocheilid clade comprising A. dayi and A. werneri is recovered as the sister group to the clade comprising A. parvus from Sri Lanka and Aplocheilus blockii from Peninsular India. The reciprocal monophyly of A. dayi and A. werneri is not supported in our molecular phylogeny. A. dayi and A. werneri display strong sexual dimorphism, but species-level differences are subtle, explained mostly by pigmentation patterns. Their phenotypes exhibit a parapatric distribution and may represent locally adapted forms of a single species. Alternatively, the present study does not rule out the possibility that A. dayi and A. werneri may represent an incipient species pair or that they have undergone introgression or hybridization in their contact zones. We provide evidence that the Nilwala-Gin region of southwestern Sri Lanka may have acted as a drought refugium for these fishes.

2.
Sci Rep ; 13(1): 18724, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907560

RESUMO

Sri Lanka's biota is derived largely from Southeast Asian lineages which immigrated via India following its early-Eocene contact with Laurasia. The island is now separated from southeastern India by the 30 km wide Palk Strait which, during sea-level low-stands, was bridged by the 140 km-wide Palk Isthmus. Consequently, biotic ingress and egress were mediated largely by the climate of the isthmus. Because of their dependence on perennial aquatic habitats, freshwater fish are useful models for biogeographic studies. Here we investigate the timing and dynamics of the colonization of-and diversification on-Sri Lanka by a group of four closely-related genera of cyprinid fishes (Puntius sensu lato). We construct a molecular phylogeny based on two mitochondrial and two nuclear gene markers, conduct divergence timing analyses and ancestral-range estimations to infer historical biogeography, and use haplotype networks to discern phylogeographic patterns. The origin of Puntius s.l. is dated to ~ 20 Ma. The source of diversification of Puntius s.l. is Sri Lanka-Peninsular India. Species confined to perhumid rainforests show strong phylogeographic structure, while habitat generalists show little or no such structure. Ancestral range estimations for Plesiopuntius bimaculatus and Puntius dorsalis support an 'Out of Sri Lanka' scenario. Sri Lankan Puntius s.l. derive from multiple migrations across the Palk Isthmus between the early Miocene and the late Pleistocene. Species dependent on an aseasonal climate survived aridification in rainforest refugia in the island's perhumid southwest and went on to recolonize the island and even southern India when pluvial conditions resumed. Our results support an historical extinction of Sri Lanka's montane aquatic fauna, followed by a recent partial recolonization of the highlands, showing also that headwater stream capture facilitated dispersal across basin boundaries.


Assuntos
Evolução Biológica , Cyprinidae , Animais , Sri Lanka , Filogenia , Cyprinidae/genética , Filogeografia
3.
Ecol Evol ; 13(9): e10496, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674653

RESUMO

The Adriatic brook lamprey, Lampetra zanandreai Vladykov 1955, was described from northeastern Italy. Its distribution is thought to include left tributaries of the River Po and the river basins of the Adriatic Sea from the River Po to the River Isonzo/Soca in Italy, Switzerland and Slovenia. It also shows a geographically isolated distribution in the Potenza River on the Adriatic slope in Central Italy. Lampetra from the Neretva River system in Croatia and Bosnia and Herzegovina and the Moraca River system in Montenegro that were previously identified as L. zanandreai were recently described as a new species Lampetra soljani Tutman, Freyhof, Dulcic, Glamuzina & Geiger 2017 based on morphological data and a genetic distance between the two species of roughly 2.5% in the DNA barcoding gene cytochrome oxidase I (COI). Since DNA barcodes for L. zanandreai are only available for one population from the upper Po River in northwestern Italy, we generated additional COI nucleotide sequence data of this species from Switzerland, northeastern and central Italy comprising near topotypic material and obtained GenBank sequences of the species from Slovenia to better assess the evolutionary history of the two brook lamprey species in the river basins of the Adriatic Sea. Our data show a low sequence divergence of <1% between L. zanandreai from Switzerland, northeastern and central Italy and Slovenia and the Balkan species L. soljani. However, members of the population previously identified as 'L. zanandreai' from northwest Italy are genetically highly divergent from those of L. zanandreai and likely belong to an undescribed species, L. sp. 'upper Po'. The presence of a unique and highly divergent brook lamprey lineage in the upper Po River suggests that L. zanandreai and Lampetra sp. 'upper Po' may have evolved in separate paleo drainages during the formation of the modern Po Valley subsequent to marine inundations in the Pliocene.

4.
Polar Biol ; 45(10): 1541-1552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36310661

RESUMO

Antarctic notothenioid fishes are recognised as one of the rare examples of adaptive radiation in the marine system. Withstanding the freezing temperatures of Antarctic waters, these fishes have diversified into over 100 species within no more than 10-20 million years. However, the exact species richness of the radiation remains contested. In the genus Channichthys, between one and nine species are recognised by different authors. To resolve the number of Channichthys species, genetic information would be highly valuable; however, so far, only sequences of a single species, C. rhinoceratus, are available. Here, we present the nearly complete sequence of the mitochondrial genome of C. rugosus, obtained from a formalin-fixed museum specimen sampled in 1974. This sequence differs from the mitochondrial genome of C. rhinoceratus in no more than 27 positions, suggesting that the two species may be synonymous.

5.
Proc Biol Sci ; 289(1980): 20221020, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946161

RESUMO

Quaternary climate fluctuations can affect speciation in regional biodiversity assembly in two non-mutually exclusive ways: a glacial species pump, where isolation in glacial refugia accelerates allopatric speciation, and adaptive radiation in underused adaptive zones during ice-free periods. We detected biogeographic and genetic signatures associated with both mechanisms in the assembly of the biota of the European Alps. Age distributions of endemic and widespread species within aquatic and terrestrial taxa (amphipods, fishes, amphibians, butterflies and flowering plants) revealed that endemic fish evolved only in lakes, are highly sympatric, and mainly of Holocene age, consistent with adaptive radiation. Endemic amphipods are ancient, suggesting preglacial radiation with limited range expansion and local Pleistocene survival, perhaps facilitated by a groundwater-dwelling lifestyle. Terrestrial endemics are mostly of Pleistocene age and are thus more consistent with the glacial species pump. The lack of evidence for Holocene adaptive radiation in the terrestrial biome is consistent with faster recolonization through range expansion of these taxa after glacial retreats. More stable and less seasonal ecological conditions in lakes during the Holocene may also have contributed to Holocene speciation in lakes. The high proportion of young, endemic species makes the Alpine biota vulnerable to climate change, but the mechanisms and consequences of species loss will likely differ between biomes because of their distinct evolutionary histories.


Assuntos
Borboletas , Emigração e Imigração , Animais , Biodiversidade , Ecossistema , Peixes , Especiação Genética , Filogenia , Refúgio de Vida Selvagem
6.
Ecol Evol ; 12(6): e9043, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784081

RESUMO

Ricefishes of the genus Oryzias occur commonly in the fresh and brackish waters in coastal lowlands ranging from India across Southeast Asia and on to Japan. Among the three species of Oryzias recorded from peninsular India, two widespread species, O. carnaticus and O. dancena, have previously been reported from Sri Lanka based on museum specimens derived from a few scattered localities. However, members of the genus are widespread in the coastal lowlands of Sri Lanka, a continental island separated from India by the shallow Palk Strait. Although recent molecular phylogenies of Adrianichthyidae represent near-complete taxon representation, they lack samples from Sri Lanka. Here, based on sampling at 13 locations representative of the entire geographic and climatic regions of the island's coastal lowlands, we investigate for the first time the molecular phylogenetic relationships and phylogeography of Sri Lankan Oryzias based on one nuclear and two mitochondrial markers. Sri Lankan Oryzias comprise two distinct non-sister lineages within the javanicus species group. One of these is represented by samples exclusively from the northern parts of the island; it is recognized as O. dancena. This lineage is recovered as the sister group to the remaining species in the javanicus group. The second lineage represents a species that is widespread across the island's coastal lowlands. It is recovered as the sister group of O. javanicus and is identified as O. cf. carnaticus. Ancestral-range estimates suggest two independent colonizations of Indian subcontinent and Sri Lanka by widespread ancestral species of Oryzias during two discrete temporal windows: late Miocene and Plio-Pleistocene. No phylogeographic structure is apparent in Sri Lankan Oryzias, suggesting that there are no strong barriers to gene flow and dispersal along the coastal floodplains, as is the case also for other generalist freshwater fishes in the island.

7.
Biol Lett ; 18(3): 20210568, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35350877

Assuntos
Planeta Terra , Vida
8.
Sci Adv ; 8(10): eabm4950, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263139

RESUMO

Siamese fighting (betta) fish are among the most popular and morphologically diverse pet fish, but the genetic bases of their domestication and phenotypic diversification are largely unknown. We assembled de novo the genome of a wild Betta splendens and whole-genome sequenced 98 individuals across five closely related species. We find evidence of bidirectional hybridization between domesticated ornamental betta and other wild Betta species. We discover dmrt1 as the main sex determination gene in ornamental betta and that it has lower penetrance in wild B. splendens. Furthermore, we find genes with signatures of recent, strong selection that have large effects on color in specific parts of the body or on the shape of individual fins and that most are unlinked. Our results demonstrate how simple genetic architectures paired with anatomical modularity can lead to vast phenotypic diversity generated during animal domestication and launch betta as a powerful new system for evolutionary genetics.


Assuntos
Domesticação , Genoma , Nadadeiras de Animais , Animais , Peixes/genética , Genômica
9.
BMC Ecol Evol ; 21(1): 203, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758736

RESUMO

BACKGROUND: Sri Lanka is a continental island separated from India by the Palk Strait, a shallow-shelf sea, which was emergent during periods of lowered sea level. Its biodiversity is concentrated in its perhumid south-western 'wet zone'. The island's freshwater fishes are dominated by the Cyprinidae, characterized by small diversifications of species derived from dispersals from India. These include five diminutive, endemic species of Pethia (P. bandula, P. cumingii, P. melanomaculata, P. nigrofasciata, P. reval), whose evolutionary history remains poorly understood. Here, based on comprehensive geographic sampling, we explore the phylogeny, phylogeography and morphological diversity of the genus in Sri Lanka. RESULTS: The phylogenetic analyses, based on mitochondrial and nuclear loci, recover Sri Lankan Pethia as polyphyletic. The reciprocal monophyly of P. bandula and P. nigrofasciata, and P. cumingii and P. reval, is not supported. Pethia nigrofasciata, P. cumingii, and P. reval show strong phylogeographic structure in the wet zone, compared with P. melanomaculata, which ranges across the dry and intermediate zones. Translocated populations of P. nigrofasciata and P. reval in the Central Hills likely originate from multiple sources. Morphological analyses reveal populations of P. nigrofasciata proximal to P. bandula, a narrow-range endemic, to have a mix of characters between the two species. Similarly, populations of P. cumingii in the Kalu basin possess orange fins, a state between the red-finned P. reval from Kelani to Deduru and yellow-finned P. cumingii from Bentara to Gin basins. CONCLUSIONS: Polyphyly in Sri Lankan Pethia suggests two or three colonizations from mainland India. Strong phylogeographic structure in P. nigrofasciata, P. cumingii and P. reval, compared with P. melanomaculata, supports a model wherein the topographically complex wet zone harbors greater genetic diversity than the topographically uniform dry-zone. Mixed morphological characters between P. bandula and P. nigrofasciata, and P. cumingii and P. reval, and their unresolved phylogenies, may suggest recent speciation scenarios with incomplete lineage sorting, or hybridization.


Assuntos
Cyprinidae , Animais , Cyprinidae/genética , Água Doce , Filogenia , Filogeografia , Sri Lanka
10.
Sci Rep ; 11(1): 18942, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556691

RESUMO

The four described species of Danionella are tiny, transparent fishes that mature at sizes between 10-15 mm, and represent some of the most extreme cases of vertebrate progenesis known to date. The miniature adult size and larval appearance of Danionella, combined with a diverse behavioral repertoire linked to sound production by males, have established Danionella as an important model for neurophysiological studies. The external similarity between the different species of Danionella has offered an important challenge to taxonomic identification using traditional external characters, leading to confusion over the identity of the model species. Using combined morphological and molecular taxonomic approaches, we show here that the most extensively studied species of Danionella is not D. translucida, but represents an undescribed species, D. cerebrum n. sp. that is externally almost identical to D. translucida, but differs trenchantly in several internal characters. Molecular analyses confirm the distinctiveness of D. cerebrum and D. translucida and suggest that the two species are not even sister taxa. Analysis of the evolution of sexual dimorphisms associated with the Weberian apparatus reveals significant increases in complexity from the simpler condition found in D. dracula, to most complex conditions in D. cerebrum, D. mirifica and D. translucida.


Assuntos
Cyprinidae/fisiologia , Modelos Animais , Neurofisiologia/métodos , Animais , Feminino , Masculino , Fatores Sexuais
11.
Syst Biol ; 70(5): 940-960, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-33560439

RESUMO

Pleistocene climatic fluctuations (PCF) are frequently highlighted as important evolutionary engines that triggered cycles of biome expansion and contraction. Although there is ample evidence of the impact of PCF on biodiversity of continental biomes, the consequences in insular systems depend on the geology of the islands and the ecology of the taxa inhabiting them. The idiosyncratic aspects of insular systems are exemplified by the islands of the Sunda Shelf in Southeast Asia (Sundaland), where PCF-induced eustatic fluctuations had complex interactions with the geology of the region, resulting in high species diversity and endemism. Emergent land in Southeast Asia varied drastically with sea-level fluctuations during the Pleistocene. Climate-induced fluctuations in sea level caused temporary connections between insular and continental biodiversity hotspots in Southeast Asia. These exposed lands likely had freshwater drainage systems that extended between modern islands: the Paleoriver Hypothesis. Built upon the assumption that aquatic organisms are among the most suitable models to trace ancient river boundaries and fluctuations of landmass coverage, the present study aims to examine the evolutionary consequences of PCF on the dispersal of freshwater biodiversity in Southeast Asia. Time-calibrated phylogenies of DNA-delimited species were inferred for six species-rich freshwater fish genera in Southeast Asia (Clarias, Channa, Glyptothorax, Hemirhamphodon, Dermogenys, Nomorhamphus). The results highlight rampant cryptic diversity and the temporal localization of most speciation events during the Pleistocene, with 88% of speciation events occurring during this period. Diversification analyses indicate that sea-level-dependent diversification models poorly account for species proliferation patterns for all clades excepting Channa. Ancestral area estimations point to Borneo as the most likely origin for most lineages, with two waves of dispersal to Sumatra and Java during the last 5 myr. Speciation events are more frequently associated with boundaries of the paleoriver watersheds, with 60%, than islands boundaries, with 40%. In total, one-third of speciation events are inferred to have occurred within paleorivers on a single island, suggesting that habitat heterogeneity and factors other than allopatry between islands substantially affected diversification of Sundaland fishes. Our results suggest that species proliferation in Sundaland is not wholly reliant on Pleistocene sea-level fluctuations isolating populations on different islands. [Dispersal; diversification; eustatic fluctuations; freshwater fishes; insular systems; Milankovitch cycles; paleoenvironments; vicariance.].


Assuntos
Biodiversidade , Evolução Biológica , Animais , Ecossistema , Água Doce , Filogenia
12.
Sci Rep ; 10(1): 16081, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999397

RESUMO

Pronounced organism-wide morphological stasis in evolution has resulted in taxa with unusually high numbers of primitive characters. These 'living fossils' hold a prominent role for our understanding of the diversification of the group in question. Here we provide the first detailed osteological analysis of Aenigmachanna gollum based on high-resolution nano-CT scans and one cleared and stained specimen of this recently described snakehead fish from subterranean waters of Kerala in South India. In addition to a number of derived and unique features, Aenigmachanna has several characters that exhibit putatively primitive conditions not encountered in the family Channidae. Our morphological analysis provides evidence for the phylogenetic position of Aenigmachanna as the sister group to Channidae. Molecular analyses further emphasize the uniqueness of Aenigmachanna and indicate that it is a separate lineage of snakeheads, estimated to have split from its sister group at least 34 or 109 million years ago depending on the fossil calibration employed. This may indicate that Aenigmachanna is a Gondwanan lineage, which has survived break-up of the supercontinent, with India separating from Africa at around 120 mya. The surprising morphological disparity of Aenigmachanna from members of the Channidae lead us to erect a new family of snakehead fishes, Aenigmachannidae, sister group to Channidae, to accommodate these unique snakehead fishes.


Assuntos
Peixes/classificação , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Evolução Biológica , DNA/genética , Evolução Molecular , Peixes/anatomia & histologia , Peixes/genética , Fósseis/anatomia & histologia , Fósseis/diagnóstico por imagem , História Antiga , Índia , Filogenia , Fatores de Tempo , Microtomografia por Raio-X/métodos
13.
Sci Rep ; 10(1): 2818, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071342

RESUMO

Sundaland constitutes one of the largest and most threatened biodiversity hotspots; however, our understanding of its biodiversity is afflicted by knowledge gaps in taxonomy and distribution patterns. The subfamily Rasborinae is the most diversified group of freshwater fishes in Sundaland. Uncertainties in their taxonomy and systematics have constrained its use as a model in evolutionary studies. Here, we established a DNA barcode reference library of the Rasborinae in Sundaland to examine species boundaries and range distributions through DNA-based species delimitation methods. A checklist of the Rasborinae of Sundaland was compiled based on online catalogs and used to estimate the taxonomic coverage of the present study. We generated a total of 991 DNA barcodes from 189 sampling sites in Sundaland. Together with 106 previously published sequences, we subsequently assembled a reference library of 1097 sequences that covers 65 taxa, including 61 of the 79 known Rasborinae species of Sundaland. Our library indicates that Rasborinae species are defined by distinct molecular lineages that are captured by species delimitation methods. A large overlap between intraspecific and interspecific genetic distance is observed that can be explained by the large amounts of cryptic diversity as evidenced by the 166 Operational Taxonomic Units detected. Implications for the evolutionary dynamics of species diversification are discussed.


Assuntos
Cipriniformes/classificação , Animais , Sudeste Asiático , Biodiversidade , Código de Barras de DNA Taxonômico , Água Doce , Filogenia
14.
Mol Phylogenet Evol ; 136: 215-226, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30974200

RESUMO

Although the majority of cichlid diversity occurs in the African Great Lakes, these fish have also diversified across the African continent. Such continental radiations, occurring in both rivers and lakes have received far less attention than lacustrine radiations despite some members, such as the oreochromine cichlids (commonly referred to as 'tilapia'), having significant scientific and socio-economic importance both within and beyond their native range. Unique among cichlids, several species of the genus Oreochromis exhibit adaptation to soda conditions (including tolerance to elevated temperatures and salinity), which are of interest from evolutionary biology research and aquaculture perspectives. Questions remain regarding the factors facilitating the diversification of this group, which to date have not been addressed within a phylogenetic framework. Here we present the first comprehensive (32/37 described species) multi-marker molecular phylogeny of Oreochromis and closely related Alcolapia, based on mitochondrial (1583 bp) and nuclear (3092 bp) sequence data. We show widespread discordance between nuclear DNA and mitochondrial DNA trees. This could be the result of incomplete lineage sorting and/or introgression in mitochondrial loci, although we did not find a strong signal for the latter. Based on our nuclear phylogeny we demonstrate that adaptation to adverse conditions (elevated salinity, temperature, or alkalinity) has occurred multiple times within Oreochromis, but that adaptation to extreme (soda) conditions (high salinity, temperature, and alkalinity) has likely arisen once in the lineage leading to O. amphimelas and Alcolapia. We also show Alcolapia is nested within Oreochromis, which is in agreement with previous studies, and here revise the taxonomy to synonymise the genus in Oreochromis, retaining the designation as subgenus Oreochromis (Alcolapia).


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Núcleo Celular/genética , Ciclídeos/classificação , Ciclídeos/genética , DNA Mitocondrial/genética , Filogenia , Adaptação Fisiológica/genética , Animais , Teorema de Bayes , Hibridização Genética , Lagos
15.
Genome Biol Evol ; 10(4): 1088-1103, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684203

RESUMO

The world's smallest fishes belong to the genus Paedocypris. These miniature fishes are endemic to an extreme habitat: the peat swamp forests in Southeast Asia, characterized by highly acidic blackwater. This threatened habitat is home to a large array of fishes, including a number of miniaturized but also developmentally truncated species. Especially the genus Paedocypris is characterized by profound, organism-wide developmental truncation, resulting in sexually mature individuals of <8 mm in length with a larval phenotype. Here, we report on evolutionary simplification in the genomes of two species of the dwarf minnow genus Paedocypris using whole-genome sequencing. The two species feature unprecedented Hox gene loss and genome reduction in association with their massive developmental truncation. We also show how other genes involved in the development of musculature, nervous system, and skeleton have been lost in Paedocypris, mirroring its highly progenetic phenotype. Further, our analyses suggest two mechanisms responsible for the genome streamlining in Paedocypris in relation to other Cypriniformes: severe intron shortening and reduced repeat content. As the first report on the genomic sequence of a vertebrate species with organism-wide developmental truncation, the results of our work enhance our understanding of genome evolution and how genotypes are translated to phenotypes. In addition, as a naturally simplified system closely related to zebrafish, Paedocypris provides novel insights into vertebrate development.


Assuntos
Evolução Molecular , Genes Homeobox/genética , Genoma/genética , Filogenia , Animais , Tamanho Corporal/genética , Cyprinidae/anatomia & histologia , Cyprinidae/genética , Peixe-Zebra/genética
16.
Ecol Evol ; 7(20): 8488-8506, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29075465

RESUMO

During the early stages of adaptive radiation, populations diverge in life history traits such as egg size and growth rates, in addition to eco-morphological and behavioral characteristics. However, there are few studies of life history divergence within ongoing adaptive radiations. Here, we studied Astatotilapia calliptera, a maternal mouthbrooding cichlid fish within the Lake Malawi haplochromine radiation. This species occupies a rich diversity of habitats, including the main body of Lake Malawi, as well as peripheral rivers and shallow lakes. We used common garden experiments to test for life history divergence among populations, focussing on clutch size, duration of incubation, egg mass, offspring size, and growth rates. In a first experiment, we found significant differences among populations in average clutch size and egg mass, and larger clutches were associated with smaller eggs. In a second experiment, we found significant differences among populations in brood size, duration of incubation, juvenile length when released, and growth rates. Larger broods were associated with smaller juveniles when released and shorter incubation times. Although juvenile growth rates differed between populations, these were not strongly related to initial size on release. Overall, differences in life history characters among populations were not predicted by major habitat classifications (Lake Malawi or peripheral habitats) or population genetic divergence (microsatellite-based FST). We suggest that the observed patterns are consistent with local selective forces driving the observed patterns of trait divergence. The results provide strong evidence of evolutionary divergence and covariance of life history traits among populations within a radiating cichlid species, highlighting opportunities for further work to identify the processes driving the observed divergence.

17.
PLoS One ; 12(9): e0184017, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28931084

RESUMO

Snakehead fishes of the family Channidae are predatory freshwater teleosts from Africa and Asia comprising 38 valid species. Snakeheads are important food fishes (aquaculture, live food trade) and have been introduced widely with several species becoming highly invasive. A channid barcode library was recently assembled by Serrao and co-workers to better detect and identify potential and established invasive snakehead species outside their native range. Comparing our own recent phylogenetic results of this taxonomically confusing group with those previously reported revealed several inconsistencies that prompted us to expand and improve on previous studies. By generating 343 novel snakehead coxI sequences and combining them with an additional 434 coxI sequences from GenBank we highlight several problems with previous efforts towards the assembly of a snakehead reference barcode library. We found that 16.3% of the channid coxI sequences deposited in GenBank are based on misidentifications. With the inclusion of our own data we were, however, able to solve these cases of perpetuated taxonomic confusion. Different species delimitation approaches we employed (BIN, GMYC, and PTP) were congruent in suggesting a potentially much higher species diversity within snakeheads than currently recognized. In total, 90 BINs were recovered and within a total of 15 currently recognized species multiple BINs were identified. This higher species diversity is mostly due to either the incorporation of undescribed, narrow range, endemics from the Eastern Himalaya biodiversity hotspot or the incorporation of several widespread species characterized by deep genetic splits between geographically well-defined lineages. In the latter case, over-lumping in the past has deflated the actual species numbers. Further integrative approaches are clearly needed for providing a better taxonomic understanding of snakehead diversity, new species descriptions and taxonomic revisions of the group.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , DNA/metabolismo , Peixes/genética , Animais , DNA/química , Bases de Dados Genéticas , Peixes/classificação , Filogenia , Análise de Sequência de DNA
18.
Ecol Evol ; 7(14): 5514-5523, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28770087

RESUMO

The adaptive radiation of the seven-spined gobies (Gobiidae: Gobiosomatini) represents a classic example of how ecological specialization and larval retention can drive speciation through local adaptation. However, geographically widespread and phenotypically uniform species also do occur within Gobiosomatini. This lack of phenotypic variation across large geographic areas could be due to recent colonization, widespread gene flow, or stabilizing selection acting across environmental gradients. We use a phylogeographic approach to test these alternative hypotheses in the naked goby Gobiosoma bosc, a widespread and phenotypically invariable intertidal fish found along the Atlantic Coast of North America. Using DNA sequence from 218 individuals sampled at 15 localities, we document marked intraspecific genetic structure in mitochondrial and nuclear genes at three main geographic scales: (i) between Gulf of Mexico and Atlantic Coast, (ii) between the west coast of the Florida peninsula and adjacent Gulf of Mexico across the Apalachicola Bay, and (iii) at local scales of a few hundred kilometers. Clades on either side of Florida diverged about 8 million years ago, whereas some populations along the East Cost show divergent phylogroups that have differentiated within the last 200,000 years. The absence of noticeable phenotypic or ecological differentiation among lineages suggests the role of stabilizing selection on ancestral phenotypes, together with isolation in allopatry due to reduced dispersal and restricted gene flow, as the most likely explanation for their divergence. Haplotype phylogenies and spatial patterns of genetic diversity reveal frequent population bottlenecks followed by rapid population growth, particularly along the Gulf of Mexico. The magnitude of the genetic divergence among intraspecific lineages suggests the existence of cryptic species within Gobiosoma and indicates that modes of speciation can vary among lineages within Gobiidae.

19.
PLoS One ; 12(7): e0179557, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742862

RESUMO

The complex climatic and geological history of Southeast Asia has shaped this region's high biodiversity. In particular, sea level fluctuations associated with repeated glacial cycles during the Pleistocene both facilitated, and limited, connectivity between populations. In this study, we used data from two mitochondrial and three anonymous nuclear markers to determine whether a fresh/brackish water killifish, Aplocheilus panchax, Hamilton, 1822, could be used to further understand how climatic oscillations and associated sea level fluctuations have shaped the distribution of biota within this region, and whether such patterns show evidence of isolation within palaeodrainage basins. Our analyses revealed three major mitochondrial clades within A. panchax. The basal divergence of A. panchax mitochondrial lineages was approximately 3.5 Ma, whilst the subsequent divergence timings of these clades occurred early Pleistocene (~2.6 Ma), proceeding through the Pleistocene. Continuous phylogeographic analysis showed a clear west-east dispersal followed by rapid radiation across Southeast Asia. Individuals from Krabi, just north of the Isthmus of Kra, were more closely related to the Indian lineages, providing further evidence for a freshwater faunal disjunction at the Isthmus of Kra biogeographic barrier. Our results suggest that Sulawesi, across the Wallace Line, was colonised relatively recently (~30 ka). Nuclear DNA is less geographically structured, although Mantel tests indicated that nuclear genetic distances were correlated with geographic proximity. Overall, these results imply that recent gene flow, as opposed to historical isolation, has been the key factor determining patterns of nuclear genetic variation in A. panchax, however, some evidence of historical isolation is retained within the mitochondrial genome. Our study further validates the existence of a major biogeographic boundary at the Kra Isthmus, and also demonstrates the use of widely distributed fresh/brackishwater species in phylogeographic studies, and their ability to disperse across major marine barriers in relatively recent time periods.


Assuntos
Fundulidae/genética , Fluxo Gênico , Filogenia , Alelos , Animais , Sudeste Asiático , Biodiversidade , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Genética Populacional , Filogeografia , Análise de Sequência de DNA
20.
Mol Phylogenet Evol ; 112: 138-147, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28461202

RESUMO

The phylogenetic relationships between marine and freshwater members of the New World clingfish genus Gobiesox are investigated using both mitochondrial and nuclear sequence data. Phylogenetic hypotheses are derived from Bayesian and maximum parsimony analyses of a six-gene concatenated data set (2 mitochondrial and 4 nuclear markers; 4098bp). Gobiesox is paraphyletic, due to the inclusion of Pherallodiscus, in phylogenetic hypotheses resulting from all analyses and its two included species are reassigned to Gobiesox. Within the expanded genus Gobiesox, the freshwater species (G. cephalus, G. juradoensis, G. mexicanus and G. potamius) represent a monophyletic group that is nested inside of a paraphyletic marine group. Based on the monophyly of the freshwater clingfishes, a habitat transition from marine to freshwater is inferred to have occurred only once in the evolutionary history of the group (potentially in the mid-Miocene). Gobiesox is obtained as part of a larger clade of New World clingfishes, including also members of Acyrtops, Acyrtus, Arcos, Rimicola, Sicyases and Tomicodon equivalent to the subfamily Gobiesocinae. The phylogenetic hypotheses obtained are discussed briefly in relation to the two alternative classifications currently in use simultaneously for the Gobiesocidae. A rediagnosis and list of included species is provided for Gobiesox.


Assuntos
Água Doce , Perciformes/classificação , Filogenia , Animais , Teorema de Bayes , Calibragem , Variação Genética , Perciformes/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...