Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(15): 10560-10568, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32613830

RESUMO

Neutrophils are important cells of the innate immune system and the major leukocyte subpopulation in blood. They are responsible for recognizing and neutralizing invading pathogens, such as bacteria or fungi. For this, neutrophils are well equipped with pathogen recognizing receptors, cytokines, effector molecules, and granules filled with reactive oxygen species (ROS)-producing enzymes. Depending on the pathogen type, different reactions are triggered, which result in specific activation states of the neutrophils. Here, we aim to establish a label-free method to indirectly detect infections and to identify the cause of infection by spectroscopic characterization of the neutrophils. For this, isolated neutrophils from human peripheral blood were stimulated in an in vitro infection model with heat-inactivated Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterial pathogens as well as with heat-inactivated and viable fungi (Candida albicans). Label-free and nondestructive Raman spectroscopy was used to characterize neutrophils on a single cell level. Phagocytized fungi could be visualized in a few high-resolution false color images of individual neutrophils using label-free Raman spectroscopic imaging. Using a high-throughput screening Raman spectroscope (HTS-RS), Raman spectra of more than 2000 individual neutrophils from three different donors were collected in each treatment group, yielding a data set of almost 20 000 neutrophil spectra. Random forest classification models were trained to differentiate infected and noninfected cells with high accuracy (90%). Among the neutrophils challenged with pathogens, even the cause of infection, bacterial or fungal, was predicted correctly with 92% accuracy. Therefore, Raman spectroscopy enables reliable neutrophil phenotyping and infection diagnosis in a label-free manner. In contrast to the microbiological diagnostic standard, where the pathogen is isolated in time-consuming cultivation, this Raman-based method could potentially be blood-culture independent, thus saving precious time in bloodstream infection diagnostics.


Assuntos
Candida albicans/isolamento & purificação , Escherichia coli/isolamento & purificação , Neutrófilos/microbiologia , Análise Espectral Raman/métodos , Staphylococcus aureus/isolamento & purificação , Animais , Humanos
2.
J Biophotonics ; 13(9): e202000129, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32475014

RESUMO

A revolutionary avenue for vibrational imaging with super-multiplexing capability can be seen in the recent development of Raman-active bioortogonal tags or labels. These tags and isotopic labels represent groups of chemically inert and small modifications, which can be introduced to any biomolecule of interest and then supplied to single cells or entire organisms. Recent developments in the field of spontaneous Raman spectroscopy and stimulated Raman spectroscopy in combination with targeted imaging of biomolecules within living systems are the main focus of this review. After having introduced common strategies for bioorthogonal labeling, we present applications thereof for profiling of resistance patterns in bacterial cells, investigations of pharmaceutical drug-cell interactions in eukaryotic cells and cancer diagnosis in whole tissue samples. Ultimately, this approach proves to be a flexible and robust tool for in vivo imaging on several length scales and provides comparable information as fluorescence-based imaging without the need of bulky fluorescent tags.


Assuntos
Microscopia , Análise Espectral Raman , Vibração
3.
Analyst ; 145(11): 3983-3995, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32322872

RESUMO

The design of nanoparticles for application in medical diagnostics and therapy requires a thorough understanding of various aspects of nanoparticle-cell interactions. In this work, two unconventional methods for the study of nanoparticle effects on cells, Raman spectroscopy and atomic force microscopy (AFM), were employed to track the molecular and morphological changes that are caused by the interaction between cervical carcinoma-derived HeLa cells and two types of cerium dioxide (CeO2) nanoparticles, ones with dextran coating and the others with no coating. Multivariate statistical analyses of Raman spectra, such as principal component analysis and partial least squares regression, were applied in order to extract the variations in the vibrational features of cell biomolecules and through them, the changes in biomolecular content and conformation. Both types of nanoparticles induced changes in DNA, lipid and protein contents of the cell and variations of the protein secondary structure, whereas dextran-coated CeO2 affected the cell-growth rate to a higher extent. Atomic force microscopy showed changes in cell roughness, cell height and nanoparticle effects on surface molecular layers. The method differentiated between the impact of dextran-coated and uncoated CeO2 nanoparticles with higher precision than performed viability tests. Due to the holistic approach provided by vibrational information on the overall cell content, accompanied by morphological modifications observed by high-resolution microscopy, this methodology offers a wider picture of nanoparticle-induced cell changes, in a label-free single-cell manner.


Assuntos
Membrana Celular/efeitos dos fármacos , Nanopartículas Metálicas/química , Pseudópodes/efeitos dos fármacos , Membrana Celular/química , Cério/química , Dextranos/química , Células HeLa , Humanos , Microscopia de Força Atômica , Análise de Componente Principal , Pseudópodes/química , Análise de Regressão , Análise Espectral Raman , Propriedades de Superfície
4.
J Biophotonics ; 13(2): e201960025, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31617683

RESUMO

Existing approaches for early-stage bladder tumor diagnosis largely depend on invasive and time-consuming procedures, resulting in hospitalization, bleeding, bladder perforation, infection and other health risks for the patient. The reduction of current risk factors, while maintaining or even improving the diagnostic precision, is an underlying factor in clinical instrumentation research. For example, for clinic surveillance of patients with a history of noninvasive bladder tumors real-time tumor diagnosis can enable immediate laser-based removal of tumors using flexible cystoscopes in the outpatient clinic. Therefore, novel diagnostic modalities are required that can provide real-time in vivo tumor diagnosis. Raman spectroscopy provides biochemical information of tissue samples ex vivo and in vivo and without the need for complicated sample preparation and staining procedures. For the past decade there has been a rise in applications to diagnose and characterize early cancer in different organs, such as in head and neck, colon and stomach, but also different pathologies, for example, inflammation and atherosclerotic plaques. Bladder pathology has also been studied but only with little attention to aspects that can influence the diagnosis, such as tissue heterogeneity, data preprocessing and model development. The present study presents a clinical investigative study on bladder biopsies to characterize the tumor grading ex vivo, using a compact fiber probe-based imaging Raman system, as a crucial step towards in vivo Raman endoscopy. Furthermore, this study presents an evaluation of the tissue heterogeneity of highly fluorescent bladder tissues, and the multivariate statistical analysis for discrimination between nontumor tissue, and low- and high-grade tumor.


Assuntos
Análise Espectral Raman , Neoplasias da Bexiga Urinária , Humanos , Análise Multivariada , Gradação de Tumores , Neoplasias da Bexiga Urinária/diagnóstico
5.
Sensors (Basel) ; 19(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614861

RESUMO

Pollen studies play a critical role in various fields of science. In the last couple of decades, replacement of manual identification of pollen by image-based methods using pollen morphological features was a great leap forward, but challenges for pollen with similar morphology remain, and additional approaches are required. Spectroscopy approaches for identification of pollen, such as Raman spectroscopy has potential benefits over traditional methods, due to the investigation of the intrinsic molecular composition of a sample. However, current Raman-based characterization of pollen is complex and time-consuming, resulting in low throughput and limiting the statistical significance of the acquired data. Previously demonstrated high-throughput screening Raman spectroscopy (HTS-RS) eliminates the complexity as well as human interaction by incorporation full automation of the data acquisition process. Here, we present a customization of HTS-RS for pollen identification, enabling sampling of a large number of pollen in comparison to other state-of-the-art Raman pollen investigations. We show that using Raman spectra we are able to provide a preliminary estimation of pollen types based on growth habits using hierarchical cluster analysis (HCA) as well as good taxonomy of 37 different Pollen using principal component analysis-support vector machine (PCA-SVM) with good accuracy even for the pollen specimens sharing similar morphological features. Our results suggest that HTS-RS platform meets the demands for automated pollen detection making it an alternative method for research concerning pollen.

6.
Sci Rep ; 9(1): 12653, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477762

RESUMO

Raman spectroscopy has been widely used in clinical and molecular biological studies, providing high chemical specificity without the necessity of labels and with little-to-no sample preparation. However, currently performed Raman-based studies of eukaryotic cells are still very laborious and time-consuming, resulting in a low number of sampled cells and questionable statistical validations. Furthermore, the approach requires a trained specialist to perform and analyze the experiments, rendering the method less attractive for most laboratories. In this work, we present a new high-content analysis Raman spectroscopy (HCA-RS) platform that overcomes the current challenges of conventional Raman spectroscopy implementations. HCA-RS allows sampling of a large number of cells under different physiological conditions without any user interaction. The performance of the approach is successfully demonstrated by the development of a Raman-based cell viability assay, i.e., the effect of doxorubicin concentration on monocytic THP-1 cells. A statistical model, principal component analysis combined with support vector machine (PCA-SVM), was found to successfully predict the percentage of viable cells in a mixed population and is in good agreement to results obtained by a standard cell viability assay. This study demonstrates the potential of Raman spectroscopy as a standard high-throughput tool for clinical and biological applications.


Assuntos
Análise Espectral Raman , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Humanos , Análise de Componente Principal , Máquina de Vetores de Suporte , Células THP-1
7.
Analyst ; 144(15): 4488-4492, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31287453

RESUMO

High-throughput screening Raman spectroscopy (HTS-RS) with automated localization algorithms offers unsurpassed speed and sensitivity to investigate the effect of dithiothreitol on the diatom Phaedactylum tricornutum. The HTS-RS capability that was demonstrated for this model system can be transferred to unmet analytical applications such as kinetic in vivo studies of microalgal assemblages.


Assuntos
Diatomáceas/efeitos dos fármacos , Ditiotreitol/farmacologia , Algoritmos , Diatomáceas/efeitos da radiação , Ensaios de Triagem em Larga Escala/métodos , Luz , Análise Espectral Raman/métodos , Xantofilas/química , Xantofilas/metabolismo
8.
Analyst ; 144(7): 2367-2374, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30793720

RESUMO

Caenorhabditis elegans is an animal model frequently used in research on the effects of metabolism on organismal aging. This comes with a requirement for methods to investigate metabolite content, turnover, and distribution. The aim of our study was to assess the use of a label-free approach to determine both content and distribution of glycogen, the storage form of glucose, in C. elegans. To this end, we grew C. elegans worms under three different dietary conditions for 24-48 h, representing starvation, regular diet and a high glucose diet, followed by analysis of glycogen content. Glycogen analysis was performed on fixed individual whole worms using Raman micro-spectroscopy (RMS). Results were confirmed by comparison with two conventional assays, i.e. iodine staining of worms and enzymatic determination of glycogen. RMS was further used to assess overall lipid and protein content and distribution in the same samples used for glycogen analysis. Expectedly, both glycogen and lipid content were highest in worms grown on a high glucose diet, lower in regularly fed, and lowest in starved nematodes. In summary, RMS is a method suitable for analysis of glycogen content in C. elegans that has the advantage over established methods that (i) individual worms (rather than hundreds per sample) can be analyzed, (ii) glycogen distribution can be assessed at subcellular resolution and (iii) the distribution patterns of other macromolecules can be assessed from the same worms. Thus, RMS has the potential to be used as a sensitive, accurate, cost-effective and high throughput method to evaluate glycogen stores in C. elegans.


Assuntos
Caenorhabditis elegans/metabolismo , Glicogênio/metabolismo , Análise Espectral Raman , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Iodetos/metabolismo , Iodo/metabolismo , Metabolismo dos Lipídeos
9.
Chemphyschem ; 19(9): 1048-1055, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29356256

RESUMO

The yield of high-value products, such as pigments that could be extracted from microalgae, is affected by various nutritional and physical factors. Consequently, there is a need for fast visualization techniques that investigate the responses of individual microalgal cells to changing environmental conditions without introducing perturbations. Here, we apply CARS microscopy to map the distribution of pigments in the diatoms Ditylum brightwellii and Stephanopyxis turris and report their relative change in response to varying light cycles using a marker-based watershed analysis of the acquired images. Simultaneously, the underlying specific pigment composition alterations are revealed using Raman microspectroscopy at 785 nm excitation. In regards to assessing the chemical content of microalgae, these methods present themselves as viable alternatives to the standard techniques currently in use because of their non-disruptive nature and the wealth of complementary information that could be obtained from them.


Assuntos
Carotenoides/metabolismo , Diatomáceas/metabolismo , Microalgas/metabolismo , Cloroplastos/metabolismo , Diatomáceas/efeitos da radiação , Luz , Microalgas/efeitos da radiação , Microscopia/métodos , Análise Espectral Raman/métodos
10.
Anal Bioanal Chem ; 410(3): 999-1006, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28905087

RESUMO

A new approach is presented for cell lysate identification which uses SERS-active silver nanoparticles and a droplet-based microfluidic chip. Eighty-nanoliter droplets are generated by injecting silver nanoparticles, KCl as aggregation agent, and cell lysate containing cell constituents, such as nucleic acids, carbohydrates, metabolites, and proteins into a continuous flow of mineral oil. This platform enables accurate mixing of small volumes inside the meandering channels of the quartz chip and allows acquisition of thousands of SERS spectra with 785 nm excitation at an integration time of 1 s. Preparation of three batches of three leukemia cell lines demonstrated the experimental reproducibility. The main advantage of a high number of reproducible spectra is to apply statistics for large sample populations with robust classification results. A support vector machine with leave-one-batch-out cross-validation classified SERS spectra with sensitivities, specificities, and accuracies better than 99% to differentiate Jurkat, THP-1, and MONO-MAC-6 leukemia cell lysates. This approach is compared with previous published reports about Raman spectroscopy for leukemia detection, and an outlook is given for transfer to single cells. A quartz chip was designed for SERS at 785 nm excitation. Principal component analysis of SERS spectra clearly separates cell lysates using variations in band intensity ratios.


Assuntos
Leucemia/diagnóstico , Técnicas Analíticas Microfluídicas/instrumentação , Análise Espectral Raman/instrumentação , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/métodos , Prata/química , Sonicação , Análise Espectral Raman/métodos
11.
Anal Chem ; 90(3): 2023-2030, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29286634

RESUMO

We present a high-throughput screening Raman spectroscopy (HTS-RS) platform for a rapid and label-free macromolecular fingerprinting of tens of thousands eukaryotic cells. The newly proposed label-free HTS-RS platform combines automated imaging microscopy with Raman spectroscopy to enable a rapid label-free screening of cells and can be applied to a large number of biomedical and clinical applications. The potential of the new approach is illustrated by two applications. (1) HTS-RS-based differential white blood cell count. A classification model was trained using Raman spectra of 52 218 lymphocytes, 48 220 neutrophils, and 7 294 monocytes from four volunteers. The model was applied to determine a WBC differential for two volunteers and three patients, producing comparable results between HTS-RS and machine counting. (2) HTS-RS-based identification of circulating tumor cells (CTCs) in 1:1, 1:9, and 1:99 mixtures of Panc1 cells and leukocytes yielded ratios of 55:45, 10:90, and 3:97, respectively. Because the newly developed HTS-RS platform can be transferred to many existing Raman devices in all laboratories, the proposed implementation will lead to a significant expansion of Raman spectroscopy as a standard tool in biomedical cell research and clinical diagnostics.


Assuntos
Bioquímica/métodos , Células Sanguíneas/citologia , Ensaios de Triagem em Larga Escala/métodos , Contagem de Leucócitos/métodos , Células Neoplásicas Circulantes , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos
12.
Soft Matter ; 10(33): 6147-60, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24942348

RESUMO

A novel class of symmetric amphi- and triphilic (hydrophilic, lipophilic, fluorophilic) block copolymers has been investigated with respect to their interactions with lipid membranes. The amphiphilic triblock copolymer has the structure PGMA(20)-PPO(34)-PGMA(20) (GP) and it becomes triphilic after attaching perfluoroalkyl moieties (F9) to either end which leads to F(9)-PGMA(20)-PPO(34)-PGMA(20)-F(9) (F-GP). The hydrophobic poly(propylene oxide) (PPO) block is sufficiently long to span a lipid bilayer. The poly(glycerol monomethacrylate) (PGMA) blocks have a high propensity for hydrogen bonding. The hydrophobic and lipophobic perfluoroalkyl moieties have the tendency to phase segregate in aqueous as well as in hydrocarbon environments. We performed differential scanning calorimetry (DSC) measurements on polymer bound lipid vesicles under systematic variation of the bilayer thickness, the nature of the lipid headgroup, and the polymer concentration. The vesicles were composed of phosphatidylcholines (DMPC, DPPC, DAPC, DSPC) or phosphatidylethanolamines (DMPE, DPPE, POPE). We showed that GP as well as F-GP binding have membrane stabilizing and destabilizing components. PPO and F9 blocks insert into the hydrophobic part of the membrane concomitantly with PGMA block adsorption to the lipid headgroup layer. The F9 chains act as additional membrane anchors. The insertion of the PPO blocks of both GP and F-GP could be proven by 2D-NOESY NMR spectroscopy. By fluorescence microscopy we show that F-GP binding increases the porosity of POPC giant unilamellar vesicles (GUVs), allowing the influx of water soluble dyes as well as the translocation of the complete triphilic polymer and its accumulation at the GUV surface. These results open a new route for the rational design of membrane systems with specific properties.


Assuntos
Bicamadas Lipídicas/química , Lipídeos/química , Polímeros/química , Ácidos Polimetacrílicos/química , Propilenoglicóis/química , Acrilatos/química , Adsorção , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Hidrocarbonetos/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Rodaminas/química , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...