Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Endocrinol ; 190(4): 266-274, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38578777

RESUMO

PURPOSE: The purpose of this study was to characterize the phenotype associated with a de novo gain-of-function variant in the GUCY1A2 gene. METHODS: An individual carrying the de novo heterozygous variant c.1458G>T p.(E486D) in GUCY1A2 was identified by exome sequencing. The effect of the corresponding enzyme variant α2E486D/ß1 was evaluated using concentration-response measurements with wild-type enzyme and the variant in cytosolic fractions of HEK293 cells, UV-vis absorbance spectra of the corresponding purified enzymes, and examination of overexpressed fluorescent protein-tagged constructs by confocal laser scanning microscopy. RESULTS: The patient presented with precocious peripheral puberty resembling the autonomous ovarian puberty seen in McCune-Albright syndrome. Additionally, the patient displayed severe intellectual disability. In vitro activity assays revealed an increased nitric oxide affinity for the mutant enzyme. The response to carbon monoxide was unchanged, while thermostability was decreased compared to wild type. Heme content, susceptibility to oxidation, and subcellular localization upon overexpression were unchanged. CONCLUSION: Our data define a syndromic autonomous ovarian puberty likely due to the activating allele p.(E486D) in GUCY1A2 leading to an increase in cGMP. The overlap with the ovarian symptoms of McCune-Albright syndrome suggests an impact of this cGMP increase on the cAMP pathway in the ovary. Additional cases will be needed to ensure a causal link.


Assuntos
Displasia Fibrosa Poliostótica , Puberdade Precoce , Feminino , Humanos , Displasia Fibrosa Poliostótica/diagnóstico , Mutação com Ganho de Função , Células HEK293 , Ovário , Puberdade Precoce/etiologia
2.
Eur J Pharmacol ; 881: 173203, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32446711

RESUMO

Soluble guanylyl cyclase (sGC), the major receptor for nitric oxide (NO), is a heterodimer consisting of two subunits, the α and the ß subunit. The NO/sGC/cGMP signaling pathway is protective in different disease pathomechanisms including angina pectoris, pulmonary hypertension and fibrotic diseases. The natural ligand heme has two carboxylic acids which interact in the ß1 heme nitric oxide oxygen binding (HNOX) domain with the amino acids of the highly conserved Y-x-S-x-R motif. The Y-x-S-x-R motif is also involved in binding of the dicarboxylic activators cinaciguat and BAY 60-2770 as indicated by crystallization studies of sGC activator and bacterial HNOX homologs. To what extent the Y-x-S-x-R motif hydrogen bond network contributes to binding of monocarboxylic acids has not been examined so far. In the current paper, the chemical structural formula of the novel monocarboxylic drug BAY-543 is described for the first time. Using this novel drug, we evaluate the importance of the amino acids Y135 and R139 for thermostabilization and activation in comparison to the dicarboxylic acid BAY 60-2770. Measurements with point mutated sGC variants demonstrate tyrosine 135 as exclusive binding site of the monocarboxylic acid BAY-543 but not the dicarboxylic BAY 60-2770.


Assuntos
Ativadores de Enzimas/farmacologia , Guanilil Ciclase Solúvel/metabolismo , Motivos de Aminoácidos , Animais , Benzoatos/metabolismo , Benzoatos/farmacologia , Sítios de Ligação , Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/farmacologia , Ativação Enzimática , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Células HEK293 , Humanos , Hidrocarbonetos Fluorados/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Mutação Puntual , Ligação Proteica , Conformação Proteica , Subunidades Proteicas , Células Sf9 , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/genética , Relação Estrutura-Atividade , Tirosina
3.
J Pharm Biomed Anal ; 181: 113065, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32032919

RESUMO

Thermal shift assay is a fluorescence dye based biochemical method to determine the melting point of a protein. It can be used to investigate the ligand-induced stabilization of proteins and helps to increase the likelihood of crystallization in biological samples. Dimeric proteins like soluble guanylyl cyclase (sGC) have specific structural and functional properties which may pose a challenge in thermal shift measurements. In this paper, thermal shift assay was used to examine ligand-induced thermostabilization of the dimeric heme-containing protein soluble guanylyl cyclase. Adjustment of the parameters buffer solution, pH, protein / dye ratio and protein amount per well yielded a one-phase melting curve of sGC with a sharp transition and high reproducibility. We found that thermal shift measurement is not affected by heme state or heme content of the enzyme preparation. We used the method to investigate the thermostabilization of sGC induced by the heme-mimetic activator drugs cinaciguat, BAY 60-2770 and BR 11257 in combination with non-hydrolyzable nucleotides. Measurements with the dicarboxylic drugs cinaciguat and BAY 60-2770 yielded steep melting curves with high amplitudes. In contrast, in the presence of the monocarboxylic sGC activator BR 11257, melting curves appear flattened in the dye-based measurements. In the present paper, we show that activity-based thermostability measurements are superior to dye-based measurements in detecting the thermostabilizing influence of sGC activator drugs.


Assuntos
Análise Diferencial Térmica/métodos , Estabilidade Enzimática/efeitos dos fármacos , Guanilil Ciclase Solúvel/química , Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Ligantes , Nucleotídeos/farmacologia , Temperatura de Transição
4.
Biochem Pharmacol ; 163: 142-153, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753814

RESUMO

The soluble guanylyl cyclase (sGC) plays a key role in NO/cGMP signalling and is widely recognised to be important in different disease pathomechanisms. The discovery of sGC agonists provides a new opportunity to stimulate the NO/cGMP pathway. One class of compounds are the heme-independent sGC activators, which are thought to bind to oxidised or heme-free sGC. This enzyme is preferentially formed under disease situations accompanied by oxidative stress. Accordingly, this binding mode of sGC activators has quite some appeal for the clinical use of sGC activator drugs in diseases with high oxidative stress burden. However, none of the previous sGC activators, most of them dicarboxylic acid derivatives, has passed clinical trials to date, also because of the potent blood pressure lowering effects. In the current study, we investigate the effects of a new monocarboxylic drug BR 11257 in vitro and in vivo. Activity measurements with purified enzyme indicated gentle sGC activation for BR 11257 resembling a partial agonistic behaviour. In thermal shift measurements, we observed an unexpected difference between BR 11257 and the sGC activators from the dicarboxylic acid type. While activators from the dicarboxylic acid type had a highly thermostabilising influence on sGC, this effect was absent with BR 11257. We hypothesize that the key interaction partner for thermostabilisation is the second carboxylic acid in BAY 60-2770 which is missing in BR 11257. The absence of this thermodynamic receptor stabilisation and the partial agonism may be advantageous to overcome limitations of this class of drugs by avoiding excessive hypotension.


Assuntos
Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Agonismo Parcial de Drogas , Ativadores de Enzimas/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Guanilil Ciclase Solúvel/metabolismo , Animais , Benzoatos/química , Compostos de Bifenilo/química , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ativadores de Enzimas/química , Humanos , Hidrocarbonetos Fluorados/química , Insetos , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA