Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 14212, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244558

RESUMO

Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.

3.
Nanoscale ; 9(40): 15566-15575, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28984887

RESUMO

Quantum dots (QDs) are very attractive materials for solar cells due to their high absorption coefficients, size dependence and easy tunability of their optical and electronic properties due to quantum confinement. Particularly interesting are PbS QDs owing to their broad spectral absorption until long wavelengths, their easy processability and low cost. Here, we used control of the PbS QD size to understand charge transfer processes at the interfaces of a NiO semiconductor and explain the optimal QD size in photovoltaic devices. Towards this goal, we have synthesized a series of PbS QDs with different diameters (2.8 nm to 4 nm) and investigated charge transfer dynamics by time resolved spectroscopy and their ability to act as sensitizers in nanocrystalline NiO based solar cells using the cobalt tris(4,4'-ditert-butyl-2,2'-bipyridine) complex as a redox mediator. We found that PbS QDs with an average diameter of 3.0 nm show the highest performance in terms of efficient charge transfer and light harvesting efficiency. Our study showed that hole injection from the PbS QDs to the NiO valence band (VB) is an efficient process even with low injection driving force (-0.3 eV) and occurs in 6-10 ns. Furthermore we found that direct electrolyte reduction (photoinduced electron transfer to the cobalt redox mediator) also occurs in parallel to the hole injection with a rate constant of similar magnitude (10-20 ns). In spite of its large driving force, the rate constant of the oxidative quenching of PbS by Co(iii) diminishes more steeply than hole injection on NiO when the diameter of PbS increases. This is understood as the consequence of increasing the trap states that limit electron shift. We believe that our detailed findings will advance the future design of QD sensitized photocathodes.

4.
ChemSusChem ; 10(12): 2618-2625, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28409887

RESUMO

We prepared a series of four new diketopyrrolopyrroles (DPPs)-based sensitizers that exhibit high-molar extinction coefficients, extended absorption into the long wavelengths, and well-suited photoredox properties to act as sensitizers in p-type dye-sensitized solar cells (p-DSSCs). These new DPP dyes, composed of a thienyl DPP core, are substituted on one end either by a thiophene carboxylic (Th) or a 4,4'-[(phenyl)aza]dibenzoic acid as anchoring group and, on the other extremity, either by a proton or a naphthalene diimide (NDI) moiety. These new dyes were completely characterized by absorption and emission spectroscopy along with electrochemistry and they were modeled by time-dependent DFT (TD-DFT) quantum chemical calculations. The photovoltaic study in p-DSSC with iodine-based electrolyte reveals that the Th-DPP-NDI dye is particularly efficient (Jsc =7.38 mA cm-2 ; Voc =147 mV; FF=0.32; η=0.35 %) and quite active in the low-energy region of the solar spectrum (above 700 nm), where only a few NiO dyes are effective. To illustrate the potential of DPP dyes in photocathodes, we designed a highly efficient tandem DSSC composed of a TiO2 photoanode sensitized by the dye D35 and a NiO photocathode sensitized by Th-DPP-NDI. This tandem DSSC gives the highest performances ever reported (Jsc =6.73 mA cm-2 ; Voc =910 mV; η=4.1 %) and, importantly, the tandem cell outcompetes with the sub-cells.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Níquel/química , Pirróis/química , Energia Solar , Cor , Eletroquímica , Eletrodos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Titânio/química
5.
Sci Rep ; 6: 24908, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27125454

RESUMO

Sensitized NiO based photocathode is a new field of investigation with increasing scientific interest in relation with the development of tandem dye-sensitized solar cells (photovoltaic) and dye-sensitized photoelectrosynthetic cells (solar fuel). We demonstrate herein that PbS quantum dots (QDs) represent promising inorganic sensitizers for NiO-based quantum dot-sensitized solar cells (QDSSCs). The solar cell sensitized with PbS quantum dot exhibits significantly higher photoconversion efficiency than solar cells sensitized with a classical and efficient molecular sensitizer (P1 dye = 4-(Bis-{4-[5-(2,2-dicyano-vinyl)-thiophene-2-yl]-phenyl}-amino)-benzoic acid). Furthermore, the system features an IPCE (Incident Photon-to-Current Efficiency) spectrum that spreads into the infra-red region, reaching operating wavelengths of 950 nm. The QDSSC photoelectrochemical device works with the complexes tris(4,4'-ditert-butyl-2,2'-bipyridine)cobalt(III/II) redox mediators, underscoring the formation of a long-lived charge-separated state. The electrochemical impedance spectrocopy measurements are consistent with a high packing of the QDs upon the NiO surface, the high density of which limits the access of the electrolyte and results in favorable light absorption cross-sections and a significant hole lifetime. These notable results highlight the potential of NiO-based photocathodes sensitized with quantum dots for accessing and exploiting the low-energy part of the solar spectrum in photovoltaic and photocatalysis applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...