Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(21): 7898-7905, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35587049

RESUMO

A rectangular DNA origami structure is one of the most studied and often used motif for applications in DNA nanotechnology. Here, we present two assays to study structural changes in DNA nanostructures and reveal a reversible rolling-up of the rectangular DNA origami structure induced by bivalent cations such as magnesium or calcium. First, we applied one-color and two-color superresolution DNA-PAINT with protruding strands along the long edges of the DNA origami rectangle. At increasing salt concentration, a single line instead of two lines is observed as a first indicator of rolling-up. Two-color measurements also revealed different conformations with parallel and angled edges. Second, we placed a gold nanoparticle and a dye molecule at different positions on the DNA origami structure. Distance dependent fluorescence quenching by the nanoparticle reports on dynamic transitions as well as it provides evidence that the rolling-up occurs preferentially along the diagonal of the DNA origami rectangle. The results will be helpful to test DNA structural models and the assays presented will be useful to study further structural transitions in DNA nanotechnology.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , DNA/química , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico
3.
Adv Mater ; 33(24): e2101099, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938054

RESUMO

Graphene is considered a game-changing material, especially for its mechanical and electrical properties. This work exploits that graphene is almost transparent but quenches fluorescence in a range up to ≈40 nm. Graphene as a broadband and unbleachable energy-transfer acceptor without labeling, is used to precisely determine the height of molecules with respect to graphene, to visualize the dynamics of DNA nanostructures, and to determine the orientation of Förster-type resonance energy transfer (FRET) pairs. Using DNA origami nanopositioners, biosensing, single-molecule tracking, and DNA PAINT super-resolution with <3 nm z-resolution are demonstrated. The range of examples shows the potential of graphene-on-glass coverslips as a versatile platform for single-molecule biophysics, biosensing, and super-resolution microscopy.


Assuntos
Nanotecnologia , Grafite , Nanoestruturas , Imagem Individual de Molécula
4.
Nanoscale ; 10(35): 16416-16424, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30141803

RESUMO

Fluorescence resonance energy transfer (FRET) has been instrumental in determining the structure and dynamics of biomolecules but distances above 8 nanometers are not accessible. However, with the advent and rapid development of super-resolution (SR) microscopy, distances between two fluorescent dyes below 20 nanometers can be resolved, which hitherto has been inaccessible for fluorescence microscopy approaches due to the limited resolving power of an optical imaging system that is determined by the fundamental laws of light diffraction (referred to as the diffraction limit). Therefore, the question arises whether SR microscopy can ultimately close the resolution gap between FRET and the diffraction limit and whether SR microscopy can be employed for the structural interrogation of proteins in the sub-20 nm range? Here, we show that the combination of DNA nanotechnology and single-molecule biochemistry allows the first step towards the investigation of the structural organization of a protein via SR microscopy. Limiting factors and possible future directions for the full implementation of SR microscopy as a structural tool are discussed.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência , Nanotecnologia , DNA , Corantes Fluorescentes
5.
Nano Lett ; 18(4): 2616-2622, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29562123

RESUMO

Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.

6.
Sci Rep ; 8(1): 1780, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379061

RESUMO

In recent years, DNA origami nanorulers for superresolution (SR) fluorescence microscopy have been developed from fundamental proof-of-principle experiments to commercially available test structures. The self-assembled nanostructures allow placing a defined number of fluorescent dye molecules in defined geometries in the nanometer range. Besides the unprecedented control over matter on the nanoscale, robust DNA origami nanorulers are reproducibly obtained in high yields. The distances between their fluorescent marks can be easily analysed yielding intermark distance histograms from many identical structures. Thus, DNA origami nanorulers have become excellent reference and training structures for superresolution microscopy. In this work, we go one step further and develop a calibration process for the measured distances between the fluorescent marks on DNA origami nanorulers. The superresolution technique DNA-PAINT is used to achieve nanometrological traceability of nanoruler distances following the guide to the expression of uncertainty in measurement (GUM). We further show two examples how these nanorulers are used to evaluate the performance of TIRF microscopes that are capable of single-molecule localization microscopy (SMLM).


Assuntos
DNA/química , Nanoestruturas/química , Benchmarking/métodos , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Padrões de Referência
7.
Nat Commun ; 8: 13966, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28074833

RESUMO

Over the last decade, two fields have dominated the attention of sub-diffraction photonics research: plasmonics and fluorescence nanoscopy. Nanoscopy based on single-molecule localization offers a practical way to explore plasmonic interactions with nanometre resolution. However, this seemingly straightforward technique may retrieve false positional information. Here, we make use of the DNA origami technique to both control a nanometric separation between emitters and a gold nanoparticle, and as a platform for super-resolution imaging based on single-molecule localization. This enables a quantitative comparison between the position retrieved from single-molecule localization, the true position of the emitter and full-field simulations. We demonstrate that plasmonic coupling leads to shifted molecular localizations of up to 30 nm: a single-molecule mirage.

8.
Curr Opin Biotechnol ; 39: 8-16, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26773299

RESUMO

For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution.


Assuntos
Microscopia de Fluorescência/métodos , DNA/química , DNA/metabolismo , Corantes Fluorescentes/química , Nanotecnologia
9.
Sci Rep ; 5: 14075, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26373229

RESUMO

Photostability is one of the crucial properties of a fluorophore which strongly influences the quality of single molecule-based super-resolution imaging. Enhanced yellow fluorescent protein (eYFP) is one of the most widely used versions of fluorescent proteins in modern cell biology exhibiting fast intrinsic blinking and reversible photoactivation by UV light. Here, we developed an assay for studying photostabilization of single eYFP molecules with respect to fast blinking and demonstrated a 6-fold enhanced photostability of single eYFP molecules with a beneficial influence on the blinking kinetics under oxygen removal and addition of aliphatic thiols (dSTORM-buffer). Conjugation to single stranded DNA and immobilization via DNA hybridization on a DNA origami 12 helix bundle in aqueous solution allowed photophyiscal studies of eYFP at the single-molecule level and at close to physiological conditions. The benefit of improved photophysical properties for localization-based super-resolution microscopy is demonstrated and quantitatively characterized by imaging 12 helix bundle DNA origami nanorulers with binding sites at designed distances of 160 and 100 nm and by imaging microtubules in fixed mammalian Vero cells.


Assuntos
DNA , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Imagem Molecular/métodos , Nanotecnologia , Animais , Chlorocebus aethiops , Corantes Fluorescentes , Células Vero
10.
Methods Cell Biol ; 123: 449-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24974042

RESUMO

The dynamic development of fluorescence microscopy has created a large number of new techniques, many of which are able to overcome the diffraction limit. This chapter describes the use of DNA origami nanostructures as scaffold for quantifying microscope properties such as sensitivity and resolution. The DNA origami technique enables placing of a defined number of fluorescent dyes in programmed geometries. We present a variety of DNA origami nanorulers that include nanorulers with defined labeling density and defined distances between marks. The chapter summarizes the advantages such as practically free choice of dyes and labeling density and presents examples of nanorulers in use. New triangular DNA origami nanorulers that do not require photoinduced switching by imaging transient binding to DNA nanostructures are also reported. Finally, we simulate fluorescence images of DNA origami nanorulers and reveal that the optimal DNA nanoruler for a specific application has an intermark distance that is roughly 1.3-fold the expected optical resolution.


Assuntos
Sondas de DNA/química , Corantes Fluorescentes/química , Análise de Célula Única/normas , Simulação por Computador , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas , Método de Monte Carlo , Conformação de Ácido Nucleico , Padrões de Referência , Análise de Célula Única/métodos , Coloração e Rotulagem
11.
Chemphyschem ; 15(12): 2431-5, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24895173

RESUMO

Resolution of emerging superresolution microscopy is commonly characterized by the width of a point-spread-function or by the localization accuracy of single molecules. In contrast, resolution is defined as the ability to separate two objects. Recently, DNA origamis have been proven as valuable scaffold for self-assembled nanorulers in superresolution microscopy. Here, we use DNA origami nanorulers to overcome the discrepancy of localizing single objects and separating two objects by resolving two docking sites at distances of 18, 12, and 6 nm by using the superresolution technique DNA PAINT(point accumulation for imaging in nanoscale topography). For the smallest distances, we reveal the influence of localization noise on the yield of resolvable structures that we rationalize by Monte Carlo simulations.


Assuntos
DNA/química , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Corantes Fluorescentes/química , Método de Monte Carlo
12.
Nat Protoc ; 9(6): 1367-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24833175

RESUMO

Validating and testing a fluorescence microscope or a microscopy method requires defined samples that can be used as standards. DNA origami is a new tool that provides a framework to place defined numbers of small molecules such as fluorescent dyes or proteins in a programmed geometry with nanometer precision. The flexibility and versatility in the design of DNA origami microscopy standards makes them ideally suited for the broad variety of emerging super-resolution microscopy methods. As DNA origami structures are durable and portable, they can become a universally available specimen to check the everyday functionality of a microscope. The standards are immobilized on a glass slide, and they can be imaged without further preparation and can be stored for up to 6 months. We describe a detailed protocol for the design, production and use of DNA origami microscopy standards, and we introduce a DNA origami rectangle, bundles and a nanopillar as fluorescent nanoscopic rulers. The protocol provides procedures for the design and realization of fluorescent marks on DNA origami structures, their production and purification, quality control, handling, immobilization, measurement and data analysis. The procedure can be completed in 1-2 d.


Assuntos
DNA/química , Microscopia de Fluorescência/métodos , Nanoestruturas/química , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...