Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 137: 112425, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851160

RESUMO

The production of superoxide anions and other reactive oxygen species (ROS) by neutrophils is necessary for host defense against microbes. However, excessive ROS production can induce cell damage that participates in the inflammatory response. Superoxide anions are produced by the phagocyte NADPH oxidase, a multicomponent enzyme system consisting of two transmembrane proteins (gp91phox/NOX2 and p22phox) and four soluble cytosolic proteins (p40phox, p47phox, p67phox and the small G proteins Rac1/2). Stimulation of neutrophils by various agonists, such as the bacterial peptide formyl-Met-Leu-Phe (fMLF), induces NADPH oxidase activation and superoxide production, a process that is enhanced by the pro-inflammatory cytokines such as GM-CSF. The pathways involved in this GM-CSF-induced up-regulation or priming are not fully understood. Here we show that GM-CSF induces the activation of the prolyl cis/trans isomerase Pin1 in human neutrophils. Juglone and PiB, two selective Pin1 inhibitors, were able to block GM-CSF-induced priming of ROS production by human neutrophils. Interestingly, GM-CSF induced Pin1 binding to phosphorylated p47phox at Ser345. Neutrophils isolated from synovial fluid of patients with rheumatoid arthritis are known to be primed. Here we show that Pin1 activity was also increased in these neutrophils and that Pin1 inhibitors effectively inhibited ROS hyperproduction by the same cells. These results suggest that the prolyl cis/trans isomerase Pin1 may control GM-CSF-induced priming of ROS production by neutrophils and priming of neutrophils in synovial fluid of rheumatoid arthritis patients. Pharmacological targeting of Pin1 may be a valuable approach to the treatment of inflammation.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , NADPH Oxidases , Peptidilprolil Isomerase de Interação com NIMA , Neutrófilos , Humanos , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Naftoquinonas/farmacologia , Inflamação/imunologia , Células Cultivadas , Artrite Reumatoide/imunologia , Artrite Reumatoide/tratamento farmacológico
2.
Viruses ; 13(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34751680

RESUMO

The journal retracts the article, Effects of a Single Dose of Ivermectin on Viral and Clinical Outcomes in Asymptomatic SARS-CoV-2 Infected Subjects: A Pilot Clinical Trial in Lebanon [...].

3.
Viruses ; 13(6)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073401

RESUMO

OBJECTIVE: This study was designed to determine the efficacy of ivermectin, an FDA-approved drug, in producing clinical benefits and decreasing the viral load of SARS-CoV-2 among asymptomatic subjects that tested positive for this virus in Lebanon. METHODS: A randomized controlled trial was conducted in 100 asymptomatic Lebanese subjects that have tested positive for SARS-CoV2. Fifty patients received standard preventive treatment, mainly supplements, and the experimental group received a single dose (according to body weight) of ivermectin, in addition to the same supplements the control group received. RESULTS: There was no significant difference (p = 0.06) between Ct-values of the two groups before the regimen was started (day zero), indicating that subjects in both groups had similar viral loads. At 72 h after the regimen started, the increase in Ct-values was dramatically higher in the ivermectin than in the control group. In the ivermectin group, Ct increased from 15.13 ± 2.07 (day zero) to 30.14 ± 6.22 (day three; mean ± SD), compared to the control group, where the Ct values increased only from 14.20 ± 2.48 (day zero) to 18.96 ± 3.26 (day three; mean ± SD). Moreover, more subjects in the control group developed clinical symptoms. Three individuals (6%) required hospitalization, compared to the ivermectin group (0%). CONCLUSION: Ivermectin appears to be efficacious in providing clinical benefits in a randomized treatment of asymptomatic SARS-CoV-2-positive subjects, effectively resulting in fewer symptoms, lower viral load and reduced hospital admissions. However, larger-scale trials are warranted for this conclusion to be further cemented.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ivermectina/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Adulto , Infecções Assintomáticas , COVID-19/diagnóstico , COVID-19/virologia , Feminino , Humanos , Líbano/epidemiologia , Masculino , SARS-CoV-2/isolamento & purificação , Resultado do Tratamento , Carga Viral/efeitos dos fármacos
4.
Antioxidants (Basel) ; 10(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807114

RESUMO

In acute myeloid leukemia (AML), a low level of reactive oxygen species (ROS) is associated with leukemic stem cell (LSC) quiescence, whereas a high level promotes blast proliferation. ROS homeostasis relies on a tightly-regulated balance between the antioxidant and oxidant systems. Among the oxidants, NADPH oxidases (NOX) generate ROS as a physiological function. Although it has been reported in AML initiation and development, the contribution of NOX to the ROS production in AML remains to be clarified. The aim of this study was to investigate the NOX expression and function in AML, and to examine the role of NOX in blast proliferation and differentiation. First, we interrogated the NOX expression in primary cells from public datasets, and investigated their association with prognostic markers. Next, we explored the NOX expression and activity in AML cell lines, and studied the impact of NOX knockdown on cell proliferation and differentiation. We found that NOX2 is ubiquitously expressed in AML blasts, and particularly in cells from the myelomonocytic (M4) and monocytic (M5) stages; however, it is less expressed in LSCs and in relapsed AML. This is consistent with an increased expression throughout normal hematopoietic differentiation, and is reflected in AML cell lines. Nevertheless, no endogenous NOX activity could be detected in the absence of PMA stimulation. Furthermore, CYBB knockdown, although hampering induced NOX2 activity, did not affect the proliferation and differentiation of THP-1 and HL-60 cells. In summary, our data suggest that NOX2 is a marker of AML blast differentiation, while AML cell lines lack any NOX2 endogenous activity.

5.
Free Radic Biol Med ; 160: 19-27, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32758662

RESUMO

Superoxide anion production by neutrophils is essential for host defense against microbes. Superoxide anion generates other reactive oxygen species (ROS) that are very toxic for microbes and host cells, therefore their excessive production could induce inflammatory reactions and tissue injury. Cyclic adenosine monophosphate (cAMP) elevating agents are considered to be physiological inhibitors of superoxide production by neutrophils but the mechanisms involved in this inhibitory effect are poorly understood. Superoxide is produced by the phagocyte NADPH oxidase, a complex enzyme composed of two membrane subunits, gp91phox or NOX2 and p22phox, and four cytosolic components p47phox, p67phox, p40phox, and Rac2. Except Rac2, these proteins are known to be phosphorylated upon neutrophil stimulation. Here we show that forskolin, an activator of the adenylate cyclase-cAMP-PKA pathway, induced phosphorylation of gp91phox/NOX2 and inhibited fMLF-induced NADPH oxidase activation in human neutrophils. H89, a PKA inhibitor prevented the forskolin-induced phosphorylation of gp91phox and restored NADPH oxidase activation. Furthermore, PKA phosphorylated the recombinant gp91phox/NOX2-cytosolic C-terminal region in vitro only on a few specific peptides containing serine residues, as compared to PKC. Interestingly, phosphorylation of NOX2-Cter by PKA alone did not induce interaction with the cytosolic components p47phox, p67phox and Rac2, however it induced inhibition of PKC-induced interaction. Furthermore, PKA alone did not induce NOX2 electron transfer activity, however it inhibited PKC-induced activation. These results suggest that PKA phosphorylates NOX2 in human neutrophils, a process essential to limit ROS production and inflammation under physiological conditions. Our data identify the cAMP-PKA-NOX2-axis as a critical gatekeeper of neutrophil ROS production.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Neutrófilos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fagócitos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
6.
Methods Mol Biol ; 1982: 341-352, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172483

RESUMO

The phagocyte NADPH oxidase NOX2 was the first NOX family member to be discovered. It is responsible for the production of reactive oxygen species that are required for bacterial killing and host defense. Activated NOX2 is an enzymatic complex composed of two membrane proteins, p22phox and gp91phox (renamed NOX2), which form the cytochrome b558, and four cytosolic proteins, p47phox, p67phox, p40phox, and the small GTPase Rac2. Except for Rac2, all proteins from the complex become phosphorylated during neutrophil activation, suggesting the importance of this process in NOX2 regulation. The phosphorylation of the cytosolic components, and in particular p47phox, has been extensively studied; however, the phosphorylation of the membrane proteins was less studied, in part due to the lack of good antibodies and accurate membrane solubilization techniques. In this chapter, we describe a method we have used to study NOX2 phosphorylation, which is based on the labeling of the intracellular ATP pool with 32P prior to applying a stimulus inducing protein phosphorylation. We also describe the solubilization of membrane-bound gp91phox/NOX2 and analysis by immunoprecipitation, polyacrylamide gel electrophoresis, electrophoretic transfer, phosphoamino acid analysis, and autoradiography. This protocol can also be used to study the possible phosphorylation of other NOX family members.


Assuntos
NADPH Oxidase 2/metabolismo , Neutrófilos/metabolismo , Western Blotting , Cromatografia em Camada Fina , Humanos , Marcação por Isótopo , Neutrófilos/imunologia , Oxirredução , Fagócitos/imunologia , Fagócitos/metabolismo , Fagocitose/imunologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/imunologia
7.
J Immunol ; 202(5): 1549-1558, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30665935

RESUMO

Superoxide anion production by the phagocyte NADPH oxidase plays a crucial role in host defenses and inflammatory reaction. The phagocyte NADPH oxidase is composed of cytosolic components (p40phox, p47phox, p67phox, and Rac1/2) and the membrane flavocytochrome b558, which is composed of two proteins: p22phox and gp91phox/NOX2. p22phox plays a crucial role in the stabilization of gp91phox in phagocytes and is also a docking site for p47phox during activation. In the current study, we have used a yeast two-hybrid approach to identify unknown partners of p22phox. Using the cytosolic C-terminal region of p22phox as bait to screen a human spleen cDNA library, we identified the protein interacting with amyloid precursor protein tail 1 (PAT1) as a potential partner of p22phox. The interaction between p22phox and PAT1 was further confirmed by in vitro GST pulldown and overlay assays and in intact neutrophils and COSphox cells by coimmunoprecipitation. We demonstrated that PAT1 is expressed in human neutrophils and monocytes and colocalizes with p22phox, as shown by confocal microscopy. Overexpression of PAT1 in human monocytes and in COSphox cells increased superoxide anion production and depletion of PAT1 by specific small interfering RNA inhibited this process. These data clearly identify PAT1 as a novel regulator of NADPH oxidase activation and superoxide anion production, a key phagocyte function.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Fagócitos/metabolismo , Superóxidos/metabolismo , Simportadores/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Ânions/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Simportadores/genética
8.
Eur J Clin Invest ; 48 Suppl 2: e12951, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29757466

RESUMO

Neutrophils are key cells of innate immunity and during inflammation. Upon activation, they produce large amounts of superoxide anion (O2 -. ) and ensuing reactive oxygen species (ROS) to kill phagocytized microbes. The enzyme responsible for O2 -. production is called the phagocyte NADPH oxidase. This is a multicomponent enzyme system that becomes active after assembly of four cytosolic proteins (p47phox , p67phox , p40phox and Rac2) with the transmembrane proteins (p22phox and gp91phox , which form the cytochrome b558 ). gp91phox represents the catalytic subunit of the NADPH oxidase and is also called NOX2. NADPH oxidase-derived ROS are essential for microbial killing and innate immunity; however, excessive ROS production induces tissue injury and prolonged inflammatory reactions that contribute to inflammatory diseases. Thus, NADPH oxidase activation must be tightly regulated in time and space to limit ROS production. NADPH oxidase activation is regulated by several processes such as phosphorylation of its components, exchange of GDP/GTP on Rac2 and binding of p47phox and p40phox to phospholipids. This review aims to provide new insights into the role of the phosphorylation of the NADPH oxidase components, that is gp91phox , p22phox , p47phox , p67phox and p40phox , in the activation of this enzyme.


Assuntos
NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Proteínas de Bactérias/farmacocinética , Ativação Enzimática/fisiologia , Ativadores de Enzimas/farmacologia , Humanos , NADPH Oxidase 2/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Acetato de Tetradecanoilforbol/farmacocinética
9.
Antioxid Redox Signal ; 28(13): 1238-1261, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990413

RESUMO

SIGNIFICANCE: Skin protects the body from dehydration, pathogens, and external mutagens. NADPH oxidases are central components for regulating the cellular redox balance. There is increasing evidence indicating that reactive oxygen species (ROS) generated by members of this enzyme family play important roles in the physiology and pathophysiology of the skin. Recent Advances: NADPH oxidases are active producers of ROS such as superoxide and hydrogen peroxide. Different isoforms are found in virtually all tissues. They play pivotal roles in normal cell homeostasis and in the cellular responses to various stressors. In particular, these enzymes are integral parts of redox-sensitive prosurvival and proapoptotic signaling pathways, in which they act both as effectors and as modulators. However, continuous (re)activation of NADPH oxidases can disturb the redox balance of cells, in the worst-case scenario in a permanent manner. Abnormal NADPH oxidase activity has been associated with a wide spectrum of diseases, as well as with aging and carcinogenesis. CRITICAL ISSUES: Sunlight with its beneficial and deleterious effects induces the activation of NADPH oxidases in the skin. Evidence for the important roles of this enzyme family in skin cancer and skin aging, as well as in many chronic skin diseases, is now emerging. FUTURE DIRECTIONS: Understanding the precise roles of NADPH oxidases in normal skin homeostasis, in the cellular responses to solar radiation, and during carcinogenesis will pave the way for their validation as therapeutic targets not only for the prevention and treatment of skin cancers but also for many other skin-related disorders. Antioxid. Redox Signal. 28, 1238-1261.


Assuntos
Carcinogênese/metabolismo , Homeostase , NADPH Oxidases/metabolismo , Pele/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo
11.
J Invest Dermatol ; 137(6): 1311-1321, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132856

RESUMO

The nicotinamide adenine dinucleotide phosphate oxidase (NOX) family enzymes are involved in several physiological functions. However, their roles in keratinocyte responses to UV radiation have not been clearly elucidated. This study shows that, among other NOX family members, UVB irradiation results in a biphasic activation of NOX1 that plays a critical role in defining keratinocyte fate through the modulation of the DNA damage response network. Indeed, suppression of both bursts of UVB-induced NOX1 activation by using a specific peptide inhibitor of NOX1 (InhNOX1) is associated with increased nucleotide excision repair efficiency and reduction of apoptosis, which is finally translated into decreased photocarcinogenesis. On the contrary, when only the second peak of UVB-induced NOX1 activation is blocked, both nucleotide excision repair efficiency and apoptosis are decreased. Our results show that inhibition of NOX1 activation could be a promising target for the prevention and treatment of UVB-induced skin cancer in nucleotide excision repair-proficient and -deficient patients.


Assuntos
Carcinogênese/efeitos da radiação , Queratinócitos/efeitos da radiação , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/efeitos da radiação , NADPH Oxidases/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Células Cultivadas , Modelos Animais de Doenças , Feminino , Queratinócitos/citologia , Camundongos , Camundongos Pelados , Camundongos Transgênicos , Terapia de Alvo Molecular , NADPH Oxidase 1 , NADPH Oxidases/metabolismo , Neoplasias Induzidas por Radiação/fisiopatologia , Neoplasias Induzidas por Radiação/prevenção & controle , Pirazóis/farmacologia , Pirazolonas , Piridinas/farmacologia , Piridonas , Distribuição Aleatória , Fatores de Risco , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/fisiopatologia
12.
J Invest Dermatol ; 135(4): 1108-1118, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25437426

RESUMO

Xeroderma pigmentosum type C (XP-C) is characterized mostly by a predisposition to skin cancers and accelerated photoaging, but little is known about premature skin aging in this disease. By comparing young and old mice, we found that the level of progerin and p16(INK4a) expression, ß-galactosidase activity, and reactive oxygen species, which increase with age, were higher in young Xpc(-/-) mice than in young Xpc(+/+) ones. The expression level of mitochondrial complexes and mitochondrial functions in the skin of young Xpc(-/-) was as low as in control aged Xpc(+/+)animals. Furthermore, the metabolic profile in young Xpc(-/-) mice resembled that found in aged Xpc(+/+) mice. Furthermore, premature skin aging features in young Xpc(-/-) mice were mostly rescued by inhibition of nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1) activity by using a NOX1 peptide inhibitor, suggesting that the continuous oxidative stress due to overactivation of NOX1 has a causative role in the underlying pathophysiology.


Assuntos
Proteínas de Ligação a DNA/genética , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Envelhecimento da Pele , Proteínas Adaptadoras de Transdução de Sinal , Animais , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Humanos , Queratinócitos/citologia , Lamina Tipo A , Luz , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , NADPH Oxidase 1 , Estresse Oxidativo , Proteínas/genética , Espécies Reativas de Oxigênio/metabolismo , Xeroderma Pigmentoso/metabolismo , beta-Galactosidase/metabolismo
13.
PLoS One ; 9(5): e97245, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24824222

RESUMO

p38 mitogen-activated protein kinases (MAPKs) respond to a wide range of extracellular stimuli. While the inhibition of p38 signaling is implicated in the impaired capacity to repair ultraviolet (UV)-induced DNA damage-a primary risk factor for human skin cancers-its mechanism of action in skin carcinogenesis remains unclear, as both anti-proliferative and survival functions have been previously described. In this study, we utilized cultured keratinocytes, murine tumorigenesis models, and human cutaneous squamous cell carcinoma (SCC) specimens to assess the effect of p38 in this regard. UV irradiation of normal human keratinocytes increased the expression of all four p38 isoforms (α/ß/γ/δ); whereas irradiation of p53-deficient A431 keratinocytes derived from a human SCC selectively decreased p38α, without affecting other isoforms. p38α levels are decreased in the majority of human cutaneous SCCs assessed by tissue microarray, suggesting a tumor-suppressive effect of p38α in SCC pathogenesis. Genetic and pharmacological inhibition of p38α and in A431 cells increased cell proliferation, which was in turn associated with increases in NAPDH oxidase (NOX2) activity as well as intracellular reactive oxygen species (ROS). These changes led to enhanced invasiveness of A431 cells as assessed by the matrigel invasion assay. Chronic treatment of p53-/-/SKH-1 mice with the p38 inhibitor SB203580 accelerated UV-induced SCC carcinogenesis and increased the expression of NOX2. NOX2 knockdown suppressed the augmented growth of A431 xenografts treated with SB203580. These findings indicate that in the absence of p53, p38α deficiency drives SCC growth and progression that is associated with enhanced NOX2 expression and ROS formation.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Sistema de Sinalização das MAP Quinases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Humanos , Imidazóis/efeitos adversos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Análise em Microsséries , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Piridinas/efeitos adversos , Proteína Supressora de Tumor p53/deficiência
14.
Free Radic Biol Med ; 56: 216-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23010498

RESUMO

The dual oxidases (DUOX) 1 and 2 constitute the major components of the thyroid H(2)O(2)-generating system required for thyroid hormone synthesis. With their maturation factor, DUOXA1 or DUOXA2, they share the same bidirectional promoter allowing coexpression of DUOX/DUOXA in the same tissue. However, the molecular mechanisms regulating their transcription in the human thyroid gland are not well characterized yet. Inflammatory molecules associated with autoimmune thyroid diseases have been shown to repress the thyroid function by down-regulating the expression of the major thyroid differentiation markers. These findings led us to investigate the effects of the main cytokines involved in Hashimoto thyroiditis (IFN-γ) and Graves' diseases (IL-4/IL-13) on the transcriptional regulation of DUOX and their corresponding DUOXA genes in thyroid cells. Human thyrocytes exposed to the Th2 cytokines IL-4 and IL-13 showed up-regulation of DUOX2 and DUOXA2 genes but not DUOX1/DUOXA1. The DUOX2/DUOXA2 induction was rapid and associated with a significant increase of calcium-stimulated extracellular H(2)O(2) generation. IFN-γ treatment inhibited DUOX gene expression and repressed the Th2 cytokine-dependent DUOX2/DUOXA2 expression. In another DUOX-expressing model, the human intestinal Caco-2 cell line, expression of DUOX2 and DUOXA2 mRNA was also positively modulated by IL-4 and IL-13. Analysis of the IL-4 signaling pathway revealed that the JAK1-STAT6 cascade activated by the IL-4 type 2 receptor is required for DUOX2/DUOXA2 induction. The present data open new perspectives for a better understanding of the pathophysiology of thyroid autoimmune diseases considering DUOX2-mediated oxidative damages.


Assuntos
Peróxido de Hidrogênio/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Proteínas de Membrana/biossíntese , NADPH Oxidases/biossíntese , Células Th2/metabolismo , Glândula Tireoide/metabolismo , Células CACO-2 , Células Cultivadas , Oxidases Duais , Humanos , Proteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glândula Tireoide/citologia , Técnicas de Cultura de Tecidos
15.
Mol Endocrinol ; 26(3): 481-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22301785

RESUMO

Dual oxidases (DUOX1 and DUOX2) are evolutionary conserved reduced nicotinamide adenine dinucleotide phosphate oxidases responsible for regulated hydrogen peroxide (H(2)O(2)) release of epithelial cells. Specific maturation factors (DUOXA1 and DUOXA2) are required for targeting of functional DUOX enzymes to the cell surface. Mutations in the single-copy Duox and Duoxa genes of invertebrates cause developmental defects with reduced survival, whereas knockdown in later life impairs intestinal epithelial immune homeostasis. In humans, mutations in both DUOX2 and DUOXA2 can cause congenital hypothyroidism with partial iodide organification defects compatible with a role of DUOX2-generated H(2)O(2) in driving thyroid peroxidase activity. The DUOX1/DUOXA1 system may account for residual iodide organification in patients with loss of DUOX2, but its physiological function is less clear. To provide a murine model recapitulating complete DUOX deficiency, we simultaneously targeted both Duoxa genes by homologous recombination. Knockout of Duoxa genes (Duoxa(-/-) mice) led to a maturation defect of DUOX proteins lacking Golgi processing of N-glycans and to loss of H(2)O(2) release from thyroid tissue. Postnatally, Duoxa(-/-) mice developed severe goitreous congenital hypothyroidism with undetectable serum T4 and maximally disinhibited TSH levels. Heterozygous mice had normal thyroid function parameters. (125)I uptake and discharge studies and probing of iodinated TG epitopes corroborated the iodide organification defect in Duoxa(-/-) mice. Duoxa(-/-) mice on continuous T4 replacement from P6 showed normal growth without an overt phenotype. Our results confirm in vivo the requirement of DUOXA for functional expression of DUOX-based reduced nicotinamide adenine dinucleotide phosphate oxidases and the role of DUOX isoenzymes as sole source of hormonogenic H(2)O(2).


Assuntos
Hipotireoidismo/genética , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Proteínas Nucleares/deficiência , Animais , Modelos Animais de Doenças , Oxidases Duais , Feminino , Técnicas de Inativação de Genes , Transtornos do Crescimento/tratamento farmacológico , Transtornos do Crescimento/genética , Hipotireoidismo/tratamento farmacológico , Iodetos/metabolismo , Isoenzimas/deficiência , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fenótipo , Tireoglobulina/metabolismo , Glândula Tireoide/enzimologia , Glândula Tireoide/patologia , Tireotropina/sangue , Tiroxina/uso terapêutico
16.
Biochem Pharmacol ; 82(9): 1145-52, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21784060

RESUMO

Neutrophils play a key role in host defense and inflammation through the production of superoxide anion and other reactive oxygen species (ROS) by the enzyme complex NADPH oxidase. The cytosolic NADPH oxidase component, p67phox, has been shown to be phosphorylated in human neutrophils but the pathways involved in this process are largely unknown. In this study, we show that p67phox is constitutively phosphorylated in resting human neutrophils and that neutrophil stimulation with PMA further enhanced this phosphorylation. Inhibition of the constitutively active serine/threonine phosphatases type 1 and type 2A (PP1/2A) by calyculin A resulted in the enhancement of p67phox phosphorylation. Constitutive and calyculin A-induced phosphorylation of p67phox was completely inhibited by the protein tyrosine kinase inhibitor genistein and partially inhibited by the MEK1/2 inhibitor PD98059, but was unaffected by GF109203X, wortmannin and SB203580, inhibitors of PKC, PI3K and p38MAP kinase, respectively. Two-dimensional phosphopeptide mapping revealed that constitutive and calyculin A-induced p67phox phosphorylation occurred on the same major sites. Interestingly, calyculin A enhanced formyl-Met-Leu-Phe (fMLP)-induced superoxide production, while genistein inhibited this process. Taken together, these results suggest that (i) p67phox undergoes a continual cycle of phosphorylation/dephosphorylation in resting cells; (ii) p67phox phosphorylation is controlled by MEK1/2 and an upstream tyrosine kinase; (iii) PP1/2A directly or indirectly antagonize this process. Thus, these pathways could play a role in regulating ROS production by human neutrophils at inflammatory sites.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/metabolismo , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Toxinas Marinhas , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Oxazóis/farmacologia , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
17.
Blood ; 116(26): 5795-802, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-20956805

RESUMO

Neutrophils play a key role in host defense by releasing reactive oxygen species (ROS). However, excessive ROS production by neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can damage bystander tissues, thereby contributing to inflammatory diseases. Tumor necrosis factor-α (TNF-α), a major mediator of inflammation, does not activate NADPH oxidase but induces a state of hyperresponsiveness to subsequent stimuli, an action known as priming. The molecular mechanisms by which TNF-α primes the NADPH oxidase are unknown. Here we show that Pin1, a unique cis-trans prolyl isomerase, is a previously unrecognized regulator of TNF-α-induced NADPH oxidase hyperactivation. We first showed that Pin1 is expressed in neutrophil cytosol and that its activity is markedly enhanced by TNF-α. Inhibition of Pin1 activity with juglone or with a specific peptide inhibitor abrogated TNF-α-induced priming of neutrophil ROS production induced by N-formyl-methionyl-leucyl-phenylalanine peptide (fMLF). TNF-α enhanced fMLF-induced Pin1 and p47phox translocation to the membranes and juglone inhibited this process. Pin1 binds to p47phox via phosphorylated Ser345, thereby inducing conformational changes that facilitate p47phox phosphorylation on other sites by protein kinase C. These findings indicate that Pin1 is critical for TNF-α-induced priming of NADPH oxidase and for excessive ROS production. Pin1 inhibition could potentially represent a novel anti-inflammatory strategy.


Assuntos
NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Peptidilprolil Isomerase/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Western Blotting , Membrana Celular/metabolismo , Citosol/metabolismo , Humanos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADPH Oxidases/química , Peptidilprolil Isomerase de Interação com NIMA , Naftoquinonas/farmacologia , Neutrófilos/enzimologia , Fosforilação , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo
18.
PLoS One ; 4(7): e6458, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19649246

RESUMO

BACKGROUND: Neutrophils play a major role in inflammation by releasing large amounts of ROS produced by NADPH-oxidase and myeloperoxidase (MPO). The proinflammatory cytokine TNFalpha primes ROS production through phosphorylation of the NADPH-oxidase subunit p47phox on Ser345. Conventional anti-inflammatory therapies remain partially successful and may have side effects. Therefore, regulation of neutrophil activation by natural dietary components represents an alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases. The aim of this study was to assess the effect of punicic acid, a conjugated linolenic fatty acid from pomegranate seed oil on TNFalpha-induced neutrophil hyperactivation in vitro and on colon inflammation in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: We analyzed the effect of punicic acid on TNFalpha-induced neutrophil upregulation of ROS production in vitro and on TNBS-induced rat colon inflammation. Results show that punicic acid inhibited TNFalpha-induced priming of ROS production in vitro while preserving formyl-methionyl-leucyl-phenylalanine (fMLP)-induced response. This effect was mediated by the inhibition of Ser345-p47phox phosphorylation and upstream kinase p38MAPK. Punicic acid also inhibited fMLP- and TNFalpha+fMLP-induced MPO extracellular release from neutrophils. In vivo experiments showed that punicic acid and pomegranate seed oil intake decreased neutrophil-activation and ROS/MPO-mediated tissue damage as measured by F2-isoprostane release and protected rats from TNBS-induced colon inflammation. CONCLUSIONS/SIGNIFICANCE: These data show that punicic acid exerts a potent anti-inflammatory effect through inhibition of TNFalpha-induced priming of NADPH oxidase by targeting the p38MAPKinase/Ser345-p47phox-axis and MPO release. This natural dietary compound may provide a novel alternative therapeutic strategy in inflammatory diseases such as inflammatory bowel diseases.


Assuntos
Colite/prevenção & controle , Ácidos Linolênicos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Animais , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fosforilação , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
FASEB J ; 23(4): 1011-22, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19028840

RESUMO

Neutrophils generate microbicidal oxidants through activation of a multicomponent enzyme called NADPH oxidase. During activation, the cytosolic NADPH oxidase components (p47(phox), p67(phox), p40(phox), and Rac2) translocate to the membranes, where they associate with flavocytochrome b(558), which is composed of gp91(phox)/NOX2 and p22(phox), to form the active system. During neutrophil stimulation, p47(phox), p67(phox), p40(phox), and p22(phox) are phosphorylated; however, the phosphorylation of gp91(phox)/NOX2 and its potential role have not been defined. In this study, we show that gp91(phox) is phosphorylated in stimulated neutrophils. The gp91(phox) phosphoprotein is absent in neutrophils from chronic granulomatous disease patients deficient in gp91(phox), which confirms that this phosphoprotein is gp91(phox). The protein kinase C inhibitor GF109203X inhibited phorbol 12-myristate 13-acetate-induced phosphorylation of gp91(phox), and protein kinase C (PKC) phosphorylated the recombinant gp91(phox)- cytosolic carboxy-terminal flavoprotein domain. Two-dimensional tryptic peptide mapping analysis showed that PKC phosphorylated the gp91(phox)-cytosolic tail on the same peptides that were phosphorylated on gp91(phox) in intact cells. In addition, PKC phosphorylation increased diaphorase activity of the gp91(phox) flavoprotein cytosolic domain and its binding to Rac2, p67(phox), and p47(phox). These results demonstrate that gp91(phox) is phosphorylated in human neutrophils by PKC to enhance its catalytic activity and assembly of the complex. Phosphorylation of gp91(phox)/NOX2 is a novel mechanism of NADPH oxidase regulation.


Assuntos
NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Sítios de Ligação , Citosol/enzimologia , Citosol/metabolismo , Doença Granulomatosa Crônica/enzimologia , Doença Granulomatosa Crônica/metabolismo , Humanos , Neutrófilos/metabolismo , Fagócitos/metabolismo , Fosforilação , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína RAC2 de Ligação ao GTP
20.
J Clin Invest ; 116(7): 2033-43, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16778989

RESUMO

Neutrophil NADPH oxidase plays a key role in host defense and in inflammation by releasing large amounts of superoxide and other ROSs. Proinflammatory cytokines such as GM-CSF and TNF-alpha prime ROS production by neutrophils through unknown mechanisms. Here we used peptide sequencing by tandem mass spectrometry to show that GM-CSF and TNF-alpha induce phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase, in human neutrophils. As Ser345 is located in the MAPK consensus sequence, we tested the effects of MAPK inhibitors. Inhibitors of the ERK1/2 pathway abrogated GM-CSF-induced phosphorylation of Ser345, while p38 MAPK inhibitor abrogated TNF-alpha-induced phosphorylation of Ser345. Transfection of HL-60 cells with a mutated p47phox (S345A) inhibited GM-CSF- and TNF-alpha-induced priming of ROS production. This event was also inhibited in neutrophils by a cell-permeable peptide containing a TAT-p47phox-Ser345 sequence. Furthermore, ROS generation, p47phox-Ser345 phosphorylation, and ERK1/2 and p38 MAPK phosphorylation were increased in synovial neutrophils from rheumatoid arthritis (RA) patients, and TAT-Ser345 peptide inhibited ROS production by these primed neutrophils. This study therefore identifies convergent MAPK pathways on Ser345 that are involved in GM-CSF- and TNF-alpha-induced priming of neutrophils and are activated in RA. Inhibition of the point of convergence of these pathways might serve as a novel antiinflammatory strategy.


Assuntos
Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Serina/metabolismo , Sequência de Aminoácidos , Artrite Reumatoide/imunologia , Linhagem Celular , Ativação Enzimática , Inibidores Enzimáticos/metabolismo , Genisteína/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Dados de Sequência Molecular , NADPH Oxidases/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Líquido Sinovial/citologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA