Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 22(6): 1015-1024, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32037394

RESUMO

PURPOSE: This study investigated the diagnostic utility of nontargeted genomic testing in patients with pediatric heart disease. METHODS: We analyzed genome sequencing data of 111 families with cardiac lesions for rare, disease-associated variation. RESULTS: In 14 families (12.6%), we identified causative variants: seven were de novo (ANKRD11, KMT2D, NR2F2, POGZ, PTPN11, PURA, SALL1) and six were inherited from parents with no or subclinical heart phenotypes (FLT4, DNAH9, MYH11, NEXMIF, NIPBL, PTPN11). Outcome of the testing was associated with the presence of extracardiac features (p = 0.02), but not a positive family history for cardiac lesions (p = 0.67). We also report novel plausible gene-disease associations for tetralogy of Fallot/pulmonary stenosis (CDC42BPA, FGD5), hypoplastic left or right heart (SMARCC1, TLN2, TRPM4, VASP), congenitally corrected transposition of the great arteries (UBXN10), and early-onset cardiomyopathy (TPCN1). The identified candidate genes have critical functions in heart development, such as angiogenesis, mechanotransduction, regulation of heart size, chromatin remodeling, or ciliogenesis. CONCLUSION: This data set demonstrates the diagnostic and scientific value of genome sequencing in pediatric heart disease, anticipating its role as a first-tier diagnostic test. The genetic heterogeneity will necessitate large-scale genomic initiatives for delineating novel gene-disease associations.


Assuntos
Cardiopatias/genética , Criança , Mapeamento Cromossômico , Exoma , Humanos , Mecanotransdução Celular , Transposição dos Grandes Vasos
2.
J Med Genet ; 56(12): 809-817, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515274

RESUMO

BACKGROUND: Whole blood is currently the most common DNA source for whole-genome sequencing (WGS), but for studies requiring non-invasive collection, self-collection, greater sample stability or additional tissue references, saliva or buccal samples may be preferred. However, the relative quality of sequencing data and accuracy of genetic variant detection from blood-derived, saliva-derived and buccal-derived DNA need to be thoroughly investigated. METHODS: Matched blood, saliva and buccal samples from four unrelated individuals were used to compare sequencing metrics and variant-detection accuracy among these DNA sources. RESULTS: We observed significant differences among DNA sources for sequencing quality metrics such as percentage of reads aligned and mean read depth (p<0.05). Differences were negligible in the accuracy of detecting short insertions and deletions; however, the false positive rate for single nucleotide variation detection was slightly higher in some saliva and buccal samples. The sensitivity of copy number variant (CNV) detection was up to 25% higher in blood samples, depending on CNV size and type, and appeared to be worse in saliva and buccal samples with high bacterial concentration. We also show that methylation-based enrichment for eukaryotic DNA in saliva and buccal samples increased alignment rates but also reduced read-depth uniformity, hampering CNV detection. CONCLUSION: For WGS, we recommend using DNA extracted from blood rather than saliva or buccal swabs; if saliva or buccal samples are used, we recommend against using methylation-based eukaryotic DNA enrichment. All data used in this study are available for further open-science investigation.


Assuntos
Variações do Número de Cópias de DNA/genética , DNA/genética , Sequenciamento Completo do Genoma/normas , Adulto , DNA/sangue , DNA/química , DNA/normas , Metilação de DNA/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/química , Polimorfismo de Nucleotídeo Único/genética , Saliva/química , Análise de Sequência de DNA/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA