Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 11(9): 2694-2708, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589390

RESUMO

Aberrant CXCR4/CXCL12 signaling is involved in many pathophysiological processes such as cancer and inflammatory diseases. A natural fragment of serum albumin, named EPI-X4, has previously been identified as endogenous peptide antagonist and inverse agonist of CXCR4 and is a promising compound for the development of improved analogues for the therapy of CXCR4-associated diseases. To generate optimized EPI-X4 derivatives we here performed molecular docking analysis to identify key interaction motifs of EPI-X4/CXCR4. Subsequent rational drug design allowed to increase the anti-CXCR4 activity of EPI-X4. The EPI-X4 derivative JM#21 bound CXCR4 and suppressed CXCR4-tropic HIV-1 infection more efficiently than the clinically approved small molecule CXCR4 antagonist AMD3100. EPI-X4 JM#21 did not exert toxic effects in zebrafish embryos and suppressed allergen-induced infiltration of eosinophils and other immune cells into the airways of animals in an asthma mouse model. Moreover, topical administration of the optimized EPI-X4 derivative efficiently prevented inflammation of the skin in a mouse model of atopic dermatitis. Thus, rationally designed EPI-X4 JM#21 is a novel potent antagonist of CXCR4 and the first CXCR4 inhibitor with therapeutic efficacy in atopic dermatitis. Further clinical development of this new class of CXCR4 antagonists for the therapy of atopic dermatitis, asthma and other CXCR4-associated diseases is highly warranted.

2.
Commun Biol ; 4(1): 1113, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552197

RESUMO

EPI-X4, a 16-mer fragment of albumin, is a specific endogenous antagonist and inverse agonist of the CXC-motif-chemokine receptor 4 (CXCR4) and thus a key regulator of CXCR4 function. Accordingly, activity-optimized synthetic derivatives of EPI-X4 are promising leads for the therapy of CXCR4-linked disorders such as cancer or inflammatory diseases. We investigated the binding of EPI-X4 to CXCR4, which so far remained unclear, by means of biomolecular simulations combined with experimental mutagenesis and activity studies. We found that EPI-X4 interacts through its N-terminal residues with CXCR4 and identified its key interaction motifs, explaining receptor antagonization. Using this model, we developed shortened EPI-X4 derivatives (7-mers) with optimized receptor antagonizing properties as new leads for the development of CXCR4 inhibitors. Our work reveals the molecular details and mechanism by which the first endogenous peptide antagonist of CXCR4 interacts with its receptor and provides a foundation for the rational design of improved EPI-X4 derivatives.


Assuntos
Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/genética , Receptores CXCR4/genética , Albumina Sérica/genética , Simulação por Computador , Humanos , Modelos Genéticos , Fragmentos de Peptídeos/metabolismo , Receptores CXCR4/metabolismo , Albumina Sérica/metabolismo , Transdução de Sinais
3.
Front Microbiol ; 11: 618278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537017

RESUMO

Tuberculosis is a highly prevalent infectious disease with more than 1.5 million fatalities each year. Antibiotic treatment is available, but intolerable side effects and an increasing rate of drug-resistant strains of Mycobacterium tuberculosis (Mtb) may hamper successful outcomes. Antimicrobial peptides (AMPs) offer an alternative strategy for treatment of infectious diseases in which conventional antibiotic treatment fails. Human serum is a rich resource for endogenous AMPs. Therefore, we screened a library generated from hemofiltrate for activity against Mtb. Taking this unbiased approach, we identified Angiogenin as the single compound in an active fraction. The antimicrobial activity of endogenous Angiogenin against extracellular Mtb could be reproduced by synthetic Angiogenin. Using computational analysis, we identified the hypothetical active site and optimized the lytic activity by amino acid exchanges. The resulting peptide-Angie1-limited the growth of extra- and intracellular Mtb and the fast-growing pathogens Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Toward our long-term goal of evaluating Angie1 for therapeutic efficacy in vivo, we demonstrate that the peptide can be efficiently delivered into human macrophages via liposomes and is not toxic for zebrafish embryos. Taken together, we define Angiogenin as a novel endogenous AMP and derive the small, bioactive fragment Angie1, which is ready to be tested for therapeutic activity in animal models of tuberculosis and infections with fast-growing bacterial pathogens.

4.
BMC Genomics ; 20(1): 908, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783727

RESUMO

BACKGROUND: In phylogenetically diverse organisms, the 5' ends of a subset of mRNAs are trans-spliced with a spliced leader (SL) RNA. The functions of SL trans-splicing, however, remain largely enigmatic. RESULTS: We quantified translation genome-wide in the marine chordate, Oikopleura dioica, under inhibition of mTOR, a central growth regulator. Translation of trans-spliced TOP mRNAs was suppressed, consistent with a role of the SL sequence in nutrient-dependent translational control of growth-related mRNAs. Under crowded, nutrient-limiting conditions, O. dioica continued to filter-feed, but arrested growth until favorable conditions returned. Upon release from unfavorable conditions, initial recovery was independent of nutrient-responsive, trans-spliced genes, suggesting animal density sensing as a first trigger for resumption of development. CONCLUSION: Our results are consistent with a proposed role of trans-splicing in the coordinated translational down-regulation of nutrient-responsive genes under growth-limiting conditions.


Assuntos
Regulação da Expressão Gênica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Trans-Splicing , Transcrição Gênica , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Feminino , Mamíferos/genética , Motivos de Nucleotídeos , Oócitos/metabolismo , RNA Mensageiro/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Urocordados/genética
5.
Cell Cycle ; 18(17): 2006-2025, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31306061

RESUMO

A single inner centromere protein (INCENP) found throughout eukaryotes modulates Aurora B kinase activity and chromosomal passenger complex (CPC) localization, which is essential for timely mitotic progression. It has been proposed that INCENP might act as a rheostat to regulate Aurora B activity through mitosis, with successively higher activity threshold levels for chromosome alignment, the spindle checkpoint, anaphase spindle transfer and finally spindle elongation and cytokinesis. It remains mechanistically unclear how this would be achieved. Here, we reveal that the urochordate, Oikopleura dioica, possesses two INCENP paralogs, which display distinct localizations and subfunctionalization in order to complete M-phase. INCENPa was localized on chromosome arms and centromeres by prometaphase, and modulated Aurora B activity to mediate H3S10/S28 phosphorylation, chromosome condensation, spindle assembly and transfer of the CPC to the central spindle. Polo-like kinase (Plk1) recruitment to CDK1 phosphorylated INCENPa was crucial for INCENPa-Aurora B enrichment on centromeres. The second paralog, INCENPb was enriched on centromeres from prometaphase, and relocated to the central spindle at anaphase onset. In the absence of INCENPa, meiotic spindles failed to form, and homologous chromosomes did not segregate. INCENPb was not required for early to mid M-phase events but became essential for the activity and localization of Aurora B on the central spindle and midbody during cytokinesis in order to allow abscission to occur. Together, our results demonstrate that INCENP paralog switching on centromeres modulates Aurora B kinase localization, thus chronologically regulating CPC functions during fast embryonic divisions in the urochordate O. dioica. Abbreviations: CCAN: constitutive centromere-associated network; CENPs: centromere proteins; cmRNA: capped messenger RNA; CPC: chromosomal passenger complex; INCENP: inner centromere protein; Plk1: polo-like kinase 1; PP1: protein phosphatase 1; PP2A: protein phosphatase 2A; SAC: spindle assembly checkpoint; SAH: single α-helix domain.


Assuntos
Aurora Quinase B/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos/genética , Mitose/genética , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos/genética , Citocinese/genética , Humanos , Cinetocoros/metabolismo , Fosforilação/genética , Plâncton/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Fuso Acromático/genética , Quinase 1 Polo-Like
6.
Cell Cycle ; 14(6): 880-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25714331

RESUMO

Cyclin-dependent kinases (CDKs) are central regulators of eukaryotic cell cycle progression. In contrast to interphase CDKs, the mitotic phase CDK1 is the only CDK capable of driving the entire cell cycle and it can do so from yeast to mammals. Interestingly, plants and the marine chordate, Oikopleura dioica, possess paralogs of the highly conserved CDK1 regulator. However, whereas in plants the 2 CDK1 paralogs replace interphase CDK functions, O. dioica has a full complement of interphase CDKs in addition to its 5 odCDK1 paralogs. Here we show specific sub-functionalization of odCDK1 paralogs during oogenesis. Differential spatiotemporal dynamics of the odCDK1a, d and e paralogs and the meiotic polo-like kinase 1 (Plk1) and aurora kinase determine the subset of meiotic nuclei in prophase I arrest that will seed growing oocytes and complete meiosis. Whereas we find odCDK1e to be non-essential, knockdown of the odCDK1a paralog resulted in the spawning of non-viable oocytes of reduced size. Knockdown of odCDK1d also resulted in the spawning of non-viable oocytes. In this case, the oocytes were of normal size, but were unable to extrude polar bodies upon exposure to sperm, because they were unable to resume meiosis from prophase I arrest, a classical function of the sole CDK1 during meiosis in other organisms. Thus, we reveal specific sub-functionalization of CDK1 paralogs, during the meiotic oogenic program.


Assuntos
Proteína Quinase CDC2/metabolismo , Cordados/metabolismo , Meiose , Oogênese , Homologia de Sequência de Aminoácidos , Animais , Técnicas de Silenciamento de Genes , Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/ultraestrutura , Membrana Nuclear/metabolismo , Fenótipo , RNA de Cadeia Dupla/metabolismo
7.
Mol Biol Evol ; 32(3): 585-99, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25525214

RESUMO

Polycistronic mRNAs transcribed from operons are resolved via the trans-splicing of a spliced-leader (SL) RNA. Trans-splicing also occurs at monocistronic transcripts. The phlyogenetically sporadic appearance of trans-splicing and operons has made the driving force(s) for their evolution in metazoans unclear. Previous work has proposed that germline expression drives operon organization in Caenorhabditis elegans, and a recent hypothesis proposes that operons provide an evolutionary advantage via the conservation of transcriptional machinery during recovery from growth arrested states. Using a modified cap analysis of gene expression protocol we mapped sites of SL trans-splicing genome-wide in the marine chordate Oikopleura dioica. Tiled microarrays revealed the expression dynamics of trans-spliced genes across development and during recovery from growth arrest. Operons did not facilitate recovery from growth arrest in O. dioica. Instead, we found that trans-spliced transcripts were predominantly maternal. We then analyzed data from C. elegans and Ciona intestinalis and found that an enrichment of trans-splicing and operon gene expression in maternal mRNA is shared between all three species, suggesting that this may be a driving force for operon evolution in metazoans. Furthermore, we found that the majority of known terminal oligopyrimidine (TOP) mRNAs are trans-spliced in O. dioica and that the SL contains a TOP-like motif. This suggests that the SL in O. dioica confers nutrient-dependent translational control to trans-spliced mRNAs via the TOR-signaling pathway. We hypothesize that SL-trans-splicing provides an evolutionary advantage in species that depend on translational control for regulating early embryogenesis, growth and oocyte production in response to nutrient levels.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Óperon/genética , Trans-Splicing/genética , Animais , Caenorhabditis elegans/genética , Ciona intestinalis/genética , Feminino , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Urocordados/genética
8.
BMC Evol Biol ; 11: 208, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21756361

RESUMO

BACKGROUND: Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. RESULTS: We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs) and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. CONCLUSIONS: These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.


Assuntos
Cordados/classificação , Cordados/genética , Evolução Molecular , Variação Genética , Histonas/genética , Sequência de Aminoácidos , Animais , Feminino , Histonas/química , Masculino , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...