Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(10): e0139283, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26427056

RESUMO

Several studies describing the ultrastructure and extracellular matrix (ECM) of intervertebral discs (IVDs) involve animal models and specimens obtained from symptomatic individuals during surgery for degenerative disease or scoliosis, which may not necessarily correlate to changes secondary to normal aging in humans. These changes may also be segment-specific based on different load patterns throughout life. Our objective was to describe the ECM and collagen profile of cervical IVDs in young (G1 - <35 years) and elderly (G2 - >65 years) presumably-asymptomatic individuals. Thirty cervical discs per group were obtained during autopsies of presumably-asymptomatic individuals. IVDs were analyzed with MRI, a morphological grading scale, light microscopy, scanning electron microscopy (SEM) and immunohistochemistry (IHC) for collagen types I, II, III, IV, V, VI, IX and X. Macroscopic degenerative features such as loss of annulus-nucleus distinction and fissures were found in both groups and significantly more severe in G2 as expected. MRI could not detect all morphological changes when compared even with simple morphological inspection. The loose fibrocartilaginous G1 matrix was replaced by a denser ECM in G2 with predominantly cartilaginous characteristics, chondrocyte clusters and absent elastic fibers. SEM demonstrated persistence of an identifiable nucleus and Sharpey-type insertion of cervical annulus fibers even in highly-degenerated G2 specimens. All collagen types were detected in every disc sector except for collagen X, with the largest area stained by collagens II and IV. Collagen detection was significantly decreased in G2: although significant intradiscal differences were rare, changes may occur faster or earlier in the posterior annulus. These results demonstrate an extensive modification of the ECM with maintenance of basic ultrastructural features despite severe macroscopic degeneration. Collagen analysis supports there is not a "pathologic" collagen type and changes are generally similar throughout the disc. Understanding the collagen and ultrastructural substrate of degenerative changes in the human disc is an essential step in planning restorative therapies.


Assuntos
Envelhecimento , Vértebras Cervicais/química , Vértebras Cervicais/ultraestrutura , Colágeno/metabolismo , Disco Intervertebral/química , Disco Intervertebral/ultraestrutura , Adulto , Fatores Etários , Idoso , Biomarcadores/metabolismo , Vértebras Cervicais/metabolismo , Vértebras Cervicais/patologia , Matriz Extracelular , Feminino , Humanos , Técnicas Imunoenzimáticas , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade
2.
Int J Nanomedicine ; 10: 4731-46, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26251595

RESUMO

Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM(-1)s(-1) in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Cátions , Meios de Contraste/química , Meios de Contraste/farmacocinética , Meios de Contraste/toxicidade , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Tamanho da Partícula , Ratos , Ratos Wistar , Distribuição Tecidual
3.
Spine J ; 15(5): 992-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25614150

RESUMO

BACKGROUND CONTEXT: New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. PURPOSE: To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. STUDY DESIGN: An experimental descriptive-comparative study. METHODS: Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. RESULTS: Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. CONCLUSIONS: The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies.


Assuntos
Imageamento por Ressonância Magnética , Tomografia Computadorizada Multidetectores , Coluna Vertebral/diagnóstico por imagem , Animais , Coluna Vertebral/anatomia & histologia , Suínos
4.
Springerplus ; 3: 470, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25221735

RESUMO

Metabolomics has proven an useful tool for systems biology. Here we have used a metabolomics approach to identify conditions in which de novo expression of an established tumor marker, galectin-3, would confer a potential selective advantage for melanoma growth and survival. A murine melanoma cell line (Tm1) that lacks galectin-3 was modified to express it or not (Tm1.G2 and Tm1.N3, respectively). These variant cell line were then exposed to conditions of controlled oxygen tensions and glucose levels. Metabolic profiling of intracellular metabolites of cells exposed to these conditions was obtained in steady state using high resolution (1)H Magnetic Resonance Spectroscopy ((1)H-MRS) and multivariate statistical analysis. The Nuclear Magnetic Resonance (NMR) spectra contained a large number of absorption lines from which we were able to distinguish 20 metabolites, 3 fatty acids and some absorption lines and clusters were not identified. Principal Components Analysis (PCA) allowed for the discrimination of 2 experimental conditions in which expression of the tumor marker galectin-3 may play a significant role, namely exposure of cells to hypoxia under high glucose. Interestingly, under all other experimental conditions tested, the cellular system was quite robust. Our results suggest that the Metabolomics approach can be used to access information about changes in many metabolic pathways induced in tumorigenic cells and to allow the evaluation of their behavior in controlled environmental conditions or selective pressures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...