Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 247(2): 183-195, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33032261

RESUMO

Environmental temperature remarkably impacts on metabolic homeostasis, raising a serious concern about the optimum housing temperature for translational studies. Recent studies suggested that mice should be housed slightly below their thermoneutral temperature (26°C). On the other hand, the external temperature, also known as a zeitgeber, can reset the circadian rhythm. However, whether housing temperature affects the circadian oscillators of the liver remains unknown. Therefore, we have compared the effect of two housing temperatures, namely 21°C (conventional; TC) and 26°C (thermoneutral; TN), on the circadian rhythms in mice. We found that the rhythmicity of food intake showed an advanced phase at TC, while the activity was more robust at TN, with a prolonged period onset. The serum levels of norepinephrine were remarkably induced at TC, but failed to oscillate rhythmically at both temperatures. Likewise, circulating glucose levels were increased but were non-rhythmic under TC. Both total cholesterol and triglycerides levels were induced at TN, but showed an advanced phase under TC. Additionally, the expression of hepatic metabolic genes and clock genes remained rhythmic at both temperatures, with the exception of G6Pase, Fasn, Cpt1a and Cry2, at TN. Nevertheless, the liver histology examination did not show any significant changes in response to housing temperature. Although the non-consistent trends of phase changes in each temperature, our results suggest a non-reductant role of temperature in mouse internal rhythmicity resetting. Thus, the temperature-controlled internal circadian synchronization within organs should be taken into consideration when optimizing housing temperature for mice.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Fígado/metabolismo , Temperatura , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Masculino , Camundongos
2.
J Cell Mol Med ; 24(18): 11024-11029, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767644

RESUMO

The chronopharmacology refers to the utilization of physiological circadian rhythms to optimize the administration time of drugs, thus increasing their efficacy and safety, or reducing adverse effects. Simvastatin is one of the most widely prescribed drugs for the treatment of hypercholesterolaemia, hyperlipidemia and coronary artery disease. There are conflicting statements regarding the timing of simvastatin administration, and convincing experimental evidence remains unavailable. Thus, we aimed to examine whether different administration times would influence the efficacy of simvastatin. High-fat diet-fed mice were treated with simvastatin at zeitgeber time 1 (ZT1) or ZT13, respectively, for nine weeks. Simvastatin showed robust anti-hypercholesterolaemia and anti-hyperlipidemia effects on these obese mice, regardless of administration time. However, simvastatin administrated at ZT13, compared to ZT1, was more functional for decreasing serum levels of total cholesterol, triglycerides, non-esterified free fatty acids and LDL cholesterol, as well as improving liver pathological characteristics. In terms of possible mechanisms, we found that simvastatin did not alter the expression of hepatic circadian clock gene in vivo, although it failed to change the period, phase and amplitude of oscillation patterns in Per2::Luc U2OS and Bmal1::Luc U2OS cells in vitro. In contrast, simvastatin regulated the expression of Hmgcr, Mdr1 and Slco2b1 in a circadian manner, which potentially contributed to the chronopharmacological function of the drug. Taken together, we provide solid evidence to suggest that different administration times affect the lipid-lowering effects of simvastatin.


Assuntos
Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Hiperlipidemias/tratamento farmacológico , Sinvastatina/farmacocinética , Animais , Cronofarmacocinética , Relógios Circadianos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/biossíntese , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Dieta Hiperlipídica/efeitos adversos , Cronofarmacoterapia , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Obesos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Distribuição Aleatória , Sinvastatina/administração & dosagem , Sinvastatina/uso terapêutico
3.
BMC Genomics ; 21(1): 224, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32160860

RESUMO

BACKGROUND: The circadian rhythms regulate physiological functions and metabolism. Circadian Time (CT) is a unit to quantify the rhythm of endogenous circadian clock, independent of light influence. To understand the gene expression changes throughout CT, C57BL/6 J mice were maintained under constant darkness (DD) for 6 weeks, and the liver samples were collected starting at 9:00 AM (CT1), and every 4 h in a 24-h cycle (CT5, CT9, CT13, CT17 and CT21). Total RNA was extracted and subjected to RNA-Seq data (deposited as GSE 133342, L-DD). To compare gene oscillation pattern under normal light-dark condition (LD, GSE114400) and short time (2 days) dark-dark condition (S-DD, GSE70497), these data were retried from GEO database, and the trimmed mean of M-values normalization was used to normalize the three RNA-seq data followed by MetaCycle analysis. RESULTS: Approximate 12.1% of the genes under L-DD exhibited significant rhythmically expression. The top 5 biological processes enriched in L-DD oscillation genes were mRNA processing, aromatic compound catabolic process, mitochondrion organization, heterocycle catabolic process and cellular nitrogen compound mitotic catabolic process. The endogenous circadian rhythms of clock genes, P450 genes and lipid metabolism genes under L-DD were further compared with LD and S-DD. The oscillation patterns were similar but the period and amplitude of those oscillation genes were slightly altered. RT-qPCR confirmed the selected RNA sequence findings. CONCLUSIONS: This is the first study to profile oscillation gene expressions under L-DD. Our data indicate that clock genes, P450 genes and lipid metabolism genes expressed rhythmically under L-DD. Light was not the necessary factor for persisting circadian rhythm but influenced the period and amplitude of oscillation genes.


Assuntos
Proteínas CLOCK/genética , Sistema Enzimático do Citocromo P-450/genética , Fígado/química , Análise de Sequência de RNA/métodos , Animais , Ritmo Circadiano , Escuridão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA