Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5991, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472315

RESUMO

In this study, the genetic and molecular diversity of 60 quinoa accessions was assessed using agronomically important traits related to grain yield as well as microsatellite (SSR) markers, and informative markers linked to the studied traits were identified using association study. The results showed that most of the studied traits had a relatively high diversity, but grain saponin and protein content showed the highest diversity. High diversity was also observed in all SSR markers, but KAAT023, KAAT027, KAAT036, and KCAA014 showed the highest values for most of the diversity indices and can be introduced as the informative markers to assess genetic diversity in quinoa. Population structure analysis showed that the studied population probably includes two subclusters, so that out of 60 quinoa accessions, 29 (48%) and 23 (38%) accessions were assigned to the first and second subclusters, respectively, and eight (13%) accessions were considered as the mixed genotypes. The study of the population structure using Structure software showed two possible subgroups (K = 2) in the studied population and the results of the bar plot confirmed it. Association study using the general linear model (GLM) and mixed linear model (MLM) identified the number of 35 and 32 significant marker-trait associations (MTAs) for the first year (2019) and 37 and 35 significant MTAs for the second year (2020), respectively. Among the significant MTAs identified for different traits, the highest number of significant MTAs were obtained for grain yield and 1000-grain weight with six and five MTAs, respectively.


Assuntos
Chenopodium quinoa , Fenótipo , Genótipo , Grão Comestível/genética
2.
Mol Biol Rep ; 48(10): 6673-6694, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34495461

RESUMO

BACKGROUND: Barley is one of the major cereal crops, which can provide a significant source of genes for stress tolerance due to its high diversity and adaptability. Metabolite traits are considered to be significant for adaptation of barley to heat stress. METHODS AND RESULTS: In the present study, genetic relationships between 120 barley genotypes were determined with 50 simple sequence repeat (SSR) and 26 inter simple sequence repeat (ISSR) markers under heat stress and non-stress conditions. Moreover, genetic diversity of barley accessions was investigated using the studied markers covering 7 chromosomes of barley. RESULTS: In general, 153 and 85 polymorphic alleles were detected for SSR and ISSR and number of the observed polymorphic allele varied between 2-9 and 2-6, with an average of 3.26 and 3.26 alleles per locus, respectively. Markers of Bmag0223, GBMS180/180, HVM7, ISSR22, ISSR25, and ISSR48 were the most informative due to their high polymorphism information content value demonstrating that putative techniques utilized in this research can be powerful and valuable tools in breeding program of barley. Association analysis was performed between 9 important traits and SSR and ISSR markers using four statistical models. The results revealed that the model containing both population structure (Q) and general similarity in genetic background arising from shared kinship (K) factors reduced false positive associations between markers and phenotypes. CONCLUSIONS: According to the results, some of markers related to more than one trait under normal conditions (ISSR31-2, HVM62, and GBMS180/180) and heat stress conditions (ISSR20-5, EBmac635, HVM14, and ISSR37-3) were determined, which can be considered to be the most interesting candidates for further studies and simultaneously will provide a useful target for the future breeding programs, such as marker-assisted selection (MAS).


Assuntos
Estudos de Associação Genética , Variação Genética , Resposta ao Choque Térmico/genética , Hordeum/genética , Repetições de Microssatélites/genética , Metabolismo Secundário/genética , Marcadores Genéticos , Genética Populacional , Genótipo , Metaboloma/genética , Fenótipo
3.
Plant Genome ; 13(2): e20017, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33016615

RESUMO

Tomato is an attractive fruiting vegetable crop that can be used as an ornamental plant. Agronomical traits have been subjected to extensive genetic dissection to enhance vegetable breeding programs. By contrast, there are few genetic studies of ornamental traits for the development of ornamental tomato varieties. To investigate genetic loci linked to desired ornamental traits, we performed genetic analyses using an intraspecific mapping population that segregated for fruit color (yellow or red), fruit shape (round or pear), and plant height (high or compact). A genetic map was constructed with 965 single nucleotide polymorphisms (SNPs) and 33 simple sequence repeat markers. Subsequent linkage analysis using quantitative locus analysis and genome-wide association study detected four genetic loci for the three selected traits, all of which were located near the reported genes. We performed KASP-kompetitive allele-specific PCR-to develop SNP markers that were tightly linked to the four loci. Highly accurate genotyping data were obtained from the four SNPs across 187 F2 plants, which enabled us to select two lines with homozygous alleles for compact plant size and yellow pear-shaped fruits. These newly developed SNP markers and genetic strategies could be used to accelerate breeding programs for ornamental tomato plants.


Assuntos
Solanum lycopersicum , Mapeamento Cromossômico , Frutas/genética , Ligação Genética , Estudo de Associação Genômica Ampla , Solanum lycopersicum/genética
4.
Biotechnol J ; 15(8): e1900432, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32267085

RESUMO

Flavonoids represent a diversified family of phenylpropanoid-derived plant secondary metabolites. They are widely found in fruits, vegetables, and medicinal herbs. There has been increasing interest on flavonoids because of their proven bioactivity associated with anti-obesity and anti-cancer, anti-inflammatory and anti-diabetic activity. Low bioavailability of flavonoids is a major challenge restricting their applications. Due to safety and economic issues, plant extraction or chemical synthesis could not provide a scalable route for large-scale production. Alternatively, reconstruction of biosynthetic gene clusters in plants and industrially relevant microbes offer significant promise for discovery and scalable synthesis of flavonoids. This review provides an update on biotechnological production of flavonoids. The recent advances on plant metabolic engineering, microbial host, and genetically encoded biosensors are summarized. Plant metabolic engineering holds the promise to improve the yield of specific flavonoids and expand the chemical space of novel flavonoids. The choice of microbial host provides the cellular chassis that could be tailored for various stereo- or regio-selective chemistries that are crucial for their bioactivities. When coupled with transcriptional biosensing, genetically encoded biosensors could be welded into cellular metabolism to achieve high throughput screening or dynamic carbon flux re-allocation to deliver efficient microbial workhorse. The convergence of these technologies will translate the vast majority of plant genetic resources into valuable flavonoids with pharmaceutical/nutraceutical values in the foreseeable future.


Assuntos
Técnicas Biossensoriais , Biotecnologia , Flavonoides , Engenharia Metabólica , Microbiota , Plantas , Biotecnologia/métodos , Biotecnologia/tendências , Engenharia Metabólica/tendências , Microbiota/genética , Plantas/genética
5.
Sci Rep ; 9(1): 15826, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676750

RESUMO

Triterpenic acids (TAs), a large group of natural compounds with diverse biological activity, are produced by several plant taxa. Betulinic, oleanolic, and ursolic acids are the most medicinally important TAs and are mainly found in plants of the mint family. Metabolic engineering is strongly dependent on identifying the key genes in biosynthetic pathways toward the products of interest. In this study, gene expression tracking was performed by transcriptome mining, co-expression network analysis, and tissue-specific metabolite-expression analysis in order to identify possible key genes involved in TAs biosynthetic pathways. To this end, taxa-specific degenerate primers of six important genes were designed using an effective method based on the MEME algorithm in a phylogenetically related group of sequences and successfully applied in three members of the Lamiaceae (Rosmarinus officinalis, Salvia officinalis, and Thymus persicus). Based on the results of in-depth data analysis, genes encoding squalene epoxidase and oxido squalene cyclases are proposed as targets for boosting triterpene production. The results emphasize the importance of identifying key genes in triterpene biosynthesis, which may facilitate genetic manipulation or overexpression of target genes.


Assuntos
Genes de Plantas , Lamiaceae/genética , Triterpenos/metabolismo , Filogenia , Transcriptoma
6.
Plant Pathol J ; 35(3): 189-199, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31244565

RESUMO

In this research, the relationships among the 31 microsatellite markers with charcoal rot disease resistance related indices in 130 different soybean cultivars and lines were evaluated using association analysis based on the general linear model (GLM) and the mixed linear model (MLM) by the Structure and Tassel software. The results of microsatellite markers showed that the genetic structure of the studied population has three subpopulations (K=3) which the results of bar plat also confirmed it. In association analysis based on GLM and MLM models, 31 and 35 loci showed significant relationships with the evaluated traits, respectively, and confirmed considerable variation of the studied traits. The identified markers related to some of the studied traits were the same which can probably be due to pleiotropic effects or tight linkage among the genomic regions controlling these traits. Some of these relationships were including, the relationship between Sat_252 marker with amount of charcoal rot disease, Satt359, Satt190 and Sat_169 markers with number of microsclerota in stem, amount of charcoal rot disease and severity of charcoal rot disease, Sat_416 marker with number of microsclerota in stem and amount of charcoal rot disease and the Satt460 marker with number of microsclerota in stem and severity of charcoal rot disease. The results of this research and the linked microsatellite markers with the charcoal rot disease-related characteristics can be used to identify the suitable parents and to improve the soybean population in future breeding programs.

7.
J Plant Physiol ; 230: 101-108, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30368030

RESUMO

Thymus vulgaris L. (Lamiaceae), a well-known aromatic medicinal herb, has many important essential constituents in its oil, including γ-terpinene, carvacrol, thymol, and p-cymene. Gibberellins comprise hundreds of components, which regulate several various growths and underlying developmental processes, such as cell division and elongation, shoot elongation, seed germination, and gene expression. In this study, we investigated the influence of sprayed gibberellic acid (GA3) treatments on the internode length, leaf morphology, length of new shoot, expression of monoterpene synthase genes and monoterpenes content during two plant growth stages. Our results showed that increasing of internode length was a clear effect of GA3 that was varied with internode position. The results also showed that all internodes displayed a dramatic increase in the highest concentration of GA3. Also, the foliar application of GA3 resulted in not only an increased expression level of monoterpene synthase genes, but also the improved production of a monoterpene, especially in the moderate concentration of GA3 that they were up-regulated. In the lowest GA3 concentrations, relative expression levels were similar or lower than the control plants and a notable downregulation in those genes was observed in the application of the highest concentration of GA3 rather than the moderate concentrations. Overall, the expression of two out of five monoterpene synthase genes, TPS and CYP71D181, showed a correlation with the level of γ-terpinene and carvacrol, respectively, indicating that they are regulated at the transcriptional levels.


Assuntos
Giberelinas/farmacologia , Liases Intramoleculares/genética , Reguladores de Crescimento de Plantas/farmacologia , Thymus (Planta)/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Liases Intramoleculares/metabolismo , Thymus (Planta)/efeitos dos fármacos , Thymus (Planta)/enzimologia , Thymus (Planta)/genética , Regulação para Cima/efeitos dos fármacos
8.
Biochem Genet ; 56(4): 356-374, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29478138

RESUMO

Drought is one of the major abiotic stresses, which hampers the production of rice worldwide. Informative molecular markers are valuable tools for improving the drought tolerance in various varieties of rice. The present study was conducted to evaluate the informative simple sequence repeat (SSR) markers in a diverse set of rice genotypes. The genetic diversity analyses of the 83 studied rice genotypes were performed using 34 SSR markers closely linked to the major quantitative trait loci (QTLs) of grain yield under drought stress (qDTYs). In general, our results indicated high levels of polymorphism. In addition, we screened these rice genotypes at the reproductive stage under both drought stress and nonstressful conditions. The results of the regression analysis demonstrated a significant relationship between 11 SSR marker alleles and the plant paddy weight under stressful conditions. Under the nonstressful conditions, 16 SSR marker alleles showed a significant correlation with the plant paddy weight. Finally, four markers (RM279, RM231, RM166, and RM231) demonstrated a significant association with the plant paddy weight under both stressful and nonstressful conditions. These informative-associated alleles may be useful for improving the crop yield under both drought stress and nonstressful conditions in breeding programs.


Assuntos
Produtos Agrícolas/genética , Secas , Variação Genética , Repetições de Microssatélites/genética , Oryza/genética , Locos de Características Quantitativas , Análise por Conglomerados , Produtos Agrícolas/crescimento & desenvolvimento , Genes de Plantas , Marcadores Genéticos , Genótipo , Irã (Geográfico) , Oryza/crescimento & desenvolvimento , Polimorfismo Genético
9.
Physiol Mol Biol Plants ; 23(3): 529-544, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28878492

RESUMO

Changes in the antioxidant enzymes, lipid peroxidation, sodium and potassium, chlorophyll, H2O2 and proline content were monitored in the leaves of 42 rice varieties which were not yet well-documented for the salinity tolerance under different salinity levels. The tolerant varieties (FL478, Hassani, Shahpasand, Gharib and Nemat) showed signs of tolerance (lower Na+/K+ ratio, high proline accumulation, less membrane damage, lower H2O2 production, and higher superoxide dismutase and catalase activity) very well. The positive relationship between the level of salt tolerance and the amount of proline accumulation in the rice varieties support the important role of proline under the salt stress. The varieties were genotyped for 12 microsatellite markers that were closely linked to SalTol QTL. The results of association analysis indicated that RM1287, RM8094, RM3412 and AP3206 markers had the high value of R2 for the regression models of the studied traits. It shows the important role of SalTol in controlling physio-biochemical traits. The results can be used in the future marker assisted selection (MAS) directly, if the results are confirmed.

10.
Environ Sci Pollut Res Int ; 24(8): 7184-7196, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28097484

RESUMO

Salinity stress is the most important and common environmental stresses throughout the world, including Iran. The aim of this study was to investigate the expression of several important genes involved in the salinity tolerance of the rice cultivars differing in salt sensitivity. In this research, the expression of four mitochondrial genes, H2O2, malondialdehyde (MDA), proline, sodium, potassium and superoxide dismutase (SOD), was measured in Iranian rice cultivars and two well-known international varieties as checks in response to 100 mM salt stress. The results show that the activity of SOD in the tolerant cultivars is much higher than in the susceptible ones under saline conditions (100 mM NaCl). The study of the gene expression in the tolerant and sensitive cultivars also showed that the expression of the genes increased in the early hours of the stress, with the exception of the OsGR1. Moreover, the amount of the expression in the tolerant cultivars was far more than the susceptible ones. The result of this study showed that the function of a set of antioxidant enzymes can lead to detoxification of the reactive oxygen species, so in order to better understand ROS scavengers, a comprehensive study on the antioxidant system should be conducted.


Assuntos
Oryza , Tolerância ao Sal , Plantas Tolerantes a Sal , Cloreto de Sódio/farmacologia , Transcriptoma/efeitos dos fármacos , Tolerância ao Sal/genética , Tolerância ao Sal/fisiologia
11.
OMICS ; 17(5): 242-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23638881

RESUMO

Rice (Oryza sativa L.) is one of the most important food crops in the world, especially in Asian countries, and salinity is a major constraint to the sustainability and expansion of rice cultivation. Genetically improving salt tolerance of rice is a highly important objective of rice breeding programs. Traits such as salt tolerance are quantitatively inherited. Hence, mapping quantitative trait loci (QTL) with molecular markers can be very helpful to plant breeders in the field of agricultural genomics (AgriGenomics). In this investigation, QTL analysis of physiological traits related to salt tolerance was carried out using F2:4 population of rice derived from a cross between a salt-tolerant variety, Gharib (indica), and a salt-sensitive variety, Sepidroud (indica). A linkage map based on 148 F2 individuals was constructed with 131 SSR markers and 105 AFLP markers, covering 2475.7 cM of rice genome with an average distance of 10.48 cM between flanking markers. A total of 41 QTLs for twelve physiological traits under salinity stress were detected distributed on all rice chromosomes, some of them being reported for the first time. Also, overlapping of QTLs related to salt tolerance were observed in this study. Some of the identified QTLs on specific chromosomal regions explaining high phenotypic variance could be used for marker-assisted selection (MAS) programs. New QTLs retrieved in this study play an important role in growth of rice at seedling stage in an Iranian local population under high salinity conditions.


Assuntos
Cromossomos de Plantas , Oryza/genética , Locos de Características Quantitativas , Tolerância ao Sal/genética , Plântula/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Cruzamento , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Genômica , Genótipo , Irã (Geográfico) , Fenótipo , Salinidade
12.
J Insect Sci ; 10: 153, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21070171

RESUMO

Cocoon related characteristics are economically important traits in the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). In this study a genetic linkage map was developed that identified QTL controlling the cocoon weight, cocoon shell weight, and cocoon shell percentage using 161 amplified fragment length polymorphism (AFLP) markers. Twenty PstI/TaqI primer combinations were employed to genotype 78 F(2) progenies derived from a cross between P107 Japanese inbred line and Khorasan Lemon Iranian native strain. Among polymorphic markers, 159 AFLP markers were assigned to 24 linkage groups at the LOD threshold of 2.5 that varied in length from 4 to 299 cM. The total length of the linkage map was 2747 cM, giving an average marker resolution of 19.31 cM. A total of 21 AFLP markers were identified that were distributed over the ten linkage groups linked to the three studied traits using the composite interval mapping method. The explained variation rate by QTL controlling cocoon weight, cocoon shell weight, and cocoon shell percentage ranged from 0.02% to 64.85%, 0.2% to 49.11%, and 0.04% to 84.20%, respectively. These QTL controlled by different actions as well as under dominance, additive, partial dominance, dominance, and over dominance.


Assuntos
Bombyx/genética , Padrões de Herança/genética , Locos de Características Quantitativas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Primers do DNA/genética , Irã (Geográfico) , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA