Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 70(2): 205-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22098191

RESUMO

Fructans play important roles as reserve carbohydrates and stress protectants in plants, and additionally serve as prebiotics with emerging antioxidant properties. Various fructan types are synthesized by an array of plant fructosyltransferases belonging to family 32 of the glycoside hydrolases (GH32), clustering together with GH68 in Clan-J. Here, the 3D structure of a plant fructosyltransferase from a native source, the Pachysandra terminalis 6-SST/6-SFT (Pt6-SST/6-SFT), is reported. In addition to its 1-SST (1-kestose-forming) and hydrolytic side activities, the enzyme uses sucrose to create graminan- and levan-type fructans, which are probably associated with cold tolerance in this species. Furthermore, a Pt6-SST/6-SFT complex with 6-kestose was generated, representing a genuine acceptor binding modus at the +1, +2 and +3 subsites in the active site. The enzyme shows a unique configuration in the vicinity of its active site, including a unique D/Q couple located at the +1 subsite that plays a dual role in donor and acceptor substrate binding. Furthermore, it shows a unique orientation of some hydrophobic residues, probably contributing to its specific functionality. A model is presented showing formation of a ß(2-6) fructosyl linkage on 6-kestose to create 6,6-nystose, a mechanism that differs from the creation of a ß(2-1) fructosyl linkage on sucrose to produce 1-kestose. The structures shed light on the evolution of plant fructosyltransferases from their vacuolar invertase ancestors, and contribute to further understanding of the complex structure-function relationships within plant GH32 members.


Assuntos
Frutanos/biossíntese , Hexosiltransferases/metabolismo , Pachysandra/enzimologia , Proteínas de Plantas/metabolismo , Trissacarídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Domínio Catalítico , Cristalografia por Raios X , Hexosiltransferases/química , Hexosiltransferases/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Pachysandra/genética , Pachysandra/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trissacarídeos/química
3.
FEBS J ; 276(14): 3916-27, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19769747

RESUMO

Triticum aestivum xylanase inhibitor (TAXI)-type inhibitors are active against microbial xylanases from glycoside hydrolase family 11, but the inhibition strength and the specificity towards different xylanases differ between TAXI isoforms. Mutational and biochemical analyses of TAXI-I, TAXI-IIA and Bacillus subtilis xylanase A showed that inhibition strength and specificity depend on the identity of only a few key residues of inhibitor and xylanase [Fierens K et al. (2005) FEBS J 272, 5872-5882; Raedschelders G et al. (2005) Biochem Biophys Res Commun335, 512-522; Sorensen JF & Sibbesen O (2006) Protein Eng Des Sel 19, 205-210; Bourgois TM et al. (2007) J Biotechnol 130, 95-105]. Crystallographic analysis of the structures of TAXI-IA and TAXI-IIA in complex with glycoside hydrolase family 11 B. subtilis xylanase A now provides a substantial explanation for these observations and a detailed insight into the structural determinants for inhibition strength and specificity. Structures of the xylanaseinhibitor complexes show that inhibition is established by loop interactions with active-site residues and substrate-mimicking contacts in the binding subsites. The interaction of residues Leu292 of TAXI-IA and Pro294 of TAXI-IIA with the -2 glycon subsite of the xylanase is shown to be critical for both inhibition strength and specificity. Also, detailed analysis of the interaction interfaces of the complexes illustrates that the inhibition strength of TAXI is related to the presence of an aspartate or asparagine residue adjacent to the acid/base catalyst of the xylanase, and therefore to the pH optimum of the xylanase. The lower the pH optimum of the xylanase, the stronger will be the interaction between enzyme and inhibitor, and the stronger the resulting inhibition.


Assuntos
Bacillus subtilis/enzimologia , Endo-1,4-beta-Xilanases/química , Inibidores Enzimáticos/química , Proteínas de Plantas/química , Triticum/química , Domínio Catalítico , Cristalografia por Raios X , Endo-1,4-beta-Xilanases/antagonistas & inibidores , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Mutação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Especificidade por Substrato , Triticum/metabolismo
4.
J Exp Bot ; 60(3): 727-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19129163

RESUMO

Glycoside hydrolases (GH) have been shown to play unique roles in various biological processes like the biosynthesis of glycans, cell wall metabolism, plant defence, signalling, and the mobilization of storage reserves. To date, GH are divided into more than 100 families based upon their overall structure. GH32 and GH68 are combined in clan GH-J, not only harbouring typical hydrolases but also non-Leloir type transferases (fructosyltransferases), involved in fructan biosynthesis. This review summarizes the recent structure-function research progress on plant GH32 enzymes, and highlights the similarities and differences compared with the microbial GH32 and GH68 enzymes. A profound analysis of ligand-bound structures and site-directed mutagenesis experiments identified key residues in substrate (or inhibitor) binding and recognition. In particular, sucrose can bind as inhibitor in Cichorium intybus 1-FEH IIa, whereas it binds as substrate in Bacillus subtilis levansucrase and Arabidopsis thaliana cell wall invertase (AtcwINV1). In plant GH32, a single residue, the equivalent of Asp239 in AtcwINV1, appears to be important for sucrose stabilization in the active site and essential in determining sucrose donor specificity.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Domínio Catalítico , Sequência Conservada , Especificidade por Substrato , Triptofano
5.
Biochem J ; 418(1): 39-47, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18980579

RESUMO

AXHs (arabinoxylan arabinofuranohydrolases) are alpha-L-arabinofuranosidases that specifically hydrolyse the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl backbone residues of arabinoxylan. Bacillus subtilis was recently shown to produce an AXH that cleaves arabinose units from O-2- or O-3-mono-substituted xylose residues: BsAXH-m2,3 (B. subtilis AXH-m2,3). Crystallographic analysis reveals a two-domain structure for this enzyme: a catalytic domain displaying a five-bladed beta-propeller fold characteristic of GH (glycoside hydrolase) family 43 and a CBM (carbohydrate-binding module) with a beta-sandwich fold belonging to CBM family 6. Binding of substrate to BsAXH-m2,3 is largely based on hydrophobic stacking interactions, which probably allow the positional flexibility needed to hydrolyse both arabinose substituents at the O-2 or O-3 position of the xylose unit. Superposition of the BsAXH-m2,3 structure with known structures of the GH family 43 exo-acting enzymes, beta-xylosidase and alpha-L-arabinanase, each in complex with their substrate, reveals a different orientation of the sugar backbone.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Xilose/química , Xilose/metabolismo , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/genética , Isoenzimas/metabolismo , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
6.
J Enzyme Inhib Med Chem ; 24(1): 38-46, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18608747

RESUMO

Recently, a novel wheat thaumatin-like protein, TLXI, which inhibits microbial glycoside hydrolase family (GH) 11 xylanases has been identified. It is the first xylanase inhibitor that exerts its inhibition in a non-competitive way. In the present study we gained insight into the interaction between TLXI and xylanases via combined molecular modeling and mutagenic approaches. More specifically, site-specific mutation of His22, situated on a loop which distinguishes TLXI from other, non-inhibiting, thaumatin-like proteins, and subsequent expression of the mutant in Pichia pastoris resulted in a protein lacking inhibition capacity. The mutant protein was unable to form a complex with GH11 xylanases. Based on these findings, the interaction of TLXI with GH11 xylanases is discussed.


Assuntos
Endo-1,4-beta-Xilanases/antagonistas & inibidores , Histidina , Proteínas de Plantas/fisiologia , Clonagem Molecular , Glicosídeo Hidrolases/antagonistas & inibidores , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Ligação Proteica , Triticum
7.
Biochim Biophys Acta ; 1783(5): 864-73, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18346465

RESUMO

Tetratricopeptide (TPR)-domain proteins are involved in various cellular processes. The TPR domain is known to be responsible for interaction with other proteins commonly recognizing sequence motifs at the C-termini. One such TPR-protein, TRIP8b, was originally identified in rat as an interaction partner of Rab8b, and its human orthologue as a protein related to the peroxisomal targeting signal 1 (PTS1) receptor Pex5p (Pex5Rp). Somewhat later, the mouse orthologue was reported to bind the hyperpolarization-activated, cyclic nucleotide-regulated HCN channels, and, very recently, the rat orthologue was shown to interact with latrophilin 1, the calcium-independent receptor of alpha-latrotoxin. Here we employed various methodological approaches to investigate and compare the binding specificities of the human PTS1 receptor Pex5p and the related protein Pex5Rp/TRIP8b towards a subset of targets, including Rab8b and various C-termini resembling PTS1. The results show that the TPR domains of Pex5p and Pex5Rp/TRIP8b have distinct but overlapping substrate specificities. This suggests that selectivity in the recognition of substrates by the TPR domains of Pex5p and Pex5Rp/TRIP8b is a matter of considerable complexity, and that no single determinant appears to be sufficient in unambiguously defining a binding target for either protein. This idea is further corroborated by our observations that changes in the surrounding residues or the conformational state of one of the binding partners can profoundly alter their binding activities. The implications of these findings for the possible peroxisome-related functions of Pex5Rp/TRIP8b are discussed.


Assuntos
Proteínas Oncogênicas/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Animais , Células CHO , Cricetinae , Cricetulus , Camundongos , Modelos Moleculares , Proteínas Oncogênicas/química , Receptor 1 de Sinal de Orientação para Peroxissomos , Ligação Proteica , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Homologia Estrutural de Proteína , Proteínas rab de Ligação ao GTP
8.
J Mol Biol ; 377(2): 378-85, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18258263

RESUMO

In plants, cell-wall invertases fulfil important roles in carbohydrate partitioning, growth, development and crop yield. In this study, we report on different X-ray crystal structures of Arabidopsis thaliana cell-wall invertase 1 (AtcwINV1) mutants with sucrose. These structures reveal a detailed view of sucrose binding in the active site of the wild-type AtcwINV1. Compared to related enzyme-sucrose complexes, important differences in the orientation of the glucose subunit could be observed. The structure of the E203Q AtcwINV1 mutant showed a complete new binding modus, whereas the D23A, E203A and D239A structures most likely represent the productive binding modus. Together with a hydrophobic zone formed by the conserved W20, W47 and W82, the residues N22, D23, R148, E203, D149 and D239 are necessary to create the ideal sucrose-binding pocket. D239 can interact directly with the glucose moiety of sucrose, whereas K242 has an indirect role in substrate stabilization. Most probably, K242 keeps D239 in a favourable position upon substrate binding. Unravelling the exact position of sucrose in plant cell-wall invertases is a necessary step towards the rational design of superior invertases to further increase crop yield and biomass production.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Sacarose/química , Sacarose/metabolismo , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/classificação , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Sacarose/farmacologia , beta-Frutofuranosidase/genética
9.
Proteins ; 71(2): 552-64, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17963237

RESUMO

In the present study, we report on the X-ray crystallographic structure of a GH32 invertase mutant, (i.e., the Arabidopsis thaliana cell-wall invertase 1-E203Q, AtcwINV1-mutant) in complex with sucrose. This structure was solved to reveal the features of sugar binding in the catalytic pocket. However, as demonstrated by the X-ray structure the sugar binding and the catalytic pocket arrangement is significantly altered as compared with what was expected based on previous X-ray structures on GH-J clan enzymes. We performed a series of docking and molecular dynamics simulations on various derivatives of AtcwINV1 to reveal the reasons behind this modified sugar binding. Our results demonstrate that the E203Q mutation introduced into the catalytic pocket triggers conformational changes that alter the wild type substrate binding. In addition, this study also reveals the putative productive sucrose binding modus in the wild type enzyme.


Assuntos
Sacarose/metabolismo , beta-Frutofuranosidase/metabolismo , Substituição de Aminoácidos , Arabidopsis/enzimologia , Simulação por Computador , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética
10.
Biochem J ; 410(1): 71-9, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17983355

RESUMO

GH 11 (glycoside hydrolase family 11) xylanases are predominant enzymes in the hydrolysis of heteroxylan, an abundant structural polysaccharide in the plant cell wall. To gain more insight into the protein-ligand interactions of the glycone as well as the aglycone subsites of these enzymes, catalytically incompetent mutants of the Bacillus subtilis and Aspergillus niger xylanases were crystallized, soaked with xylo-oligosaccharides and subjected to X-ray analysis. For both xylanases, there was clear density for xylose residues in the -1 and -2 subsites. In addition, for the B. subtilis xylanase, there was also density for xylose residues in the -3 and +1 subsite showing the spanning of the -1/+1 subsites. These results, together with the observation that some residues in the aglycone subsites clearly adopt a different conformation upon substrate binding, allowed us to identify the residues important for substrate binding in the aglycone subsites. In addition to substrate binding in the active site of the enzymes, the existence of an unproductive second ligand-binding site located on the surface of both the B. subtilis and A. niger xylanases was observed. This extra binding site may have a function similar to the separate carbohydrate-binding modules of other glycoside hydrolase families.


Assuntos
Glicosídeo Hidrolases/metabolismo , Aspergillus niger/enzimologia , Bacillus subtilis/enzimologia , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Primers do DNA , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Reação em Cadeia da Polimerase , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Plant Physiol ; 145(3): 616-25, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17873089

RESUMO

Plant cell wall invertases and fructan exohydrolases (FEHs) are very closely related enzymes at the molecular and structural level (family 32 of glycoside hydrolases), but they are functionally different and are believed to fulfill distinct roles in plants. Invertases preferentially hydrolyze the glucose (Glc)-fructose (Fru) linkage in sucrose (Suc), whereas plant FEHs have no invertase activity and only split terminal Fru-Fru linkages in fructans. Recently, the three-dimensional structures of Arabidopsis (Arabidopsis thaliana) cell wall Invertase1 (AtcwINV1) and chicory (Cichorium intybus) 1-FEH IIa were resolved. Until now, it remained unknown which amino acid residues determine whether Suc or fructan is used as a donor substrate in the hydrolysis reaction of the glycosidic bond. In this article, we present site-directed mutagenesis-based data on AtcwINV1 showing that the aspartate (Asp)-239 residue fulfills an important role in both binding and hydrolysis of Suc. Moreover, it was found that the presence of a hydrophobic zone at the rim of the active site is important for optimal and stable binding of Suc. Surprisingly, a D239A mutant acted as a 1-FEH, preferentially degrading 1-kestose, indicating that plant FEHs lacking invertase activity could have evolved from a cell wall invertase-type ancestor by a few mutational changes. In general, family 32 and 68 enzymes containing an Asp-239 functional homolog have Suc as a preferential substrate, whereas enzymes lacking this homolog use fructans as a donor substrate. The presence or absence of such an Asp-239 homolog is proposed as a reliable determinant to discriminate between real invertases and defective invertases/FEHs.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ácido Aspártico/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Regulação da Expressão Gênica de Plantas , Glicosídeo Hidrolases/genética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Sacarose/química , Trissacarídeos/química , Triptofano , beta-Frutofuranosidase/genética
12.
New Phytol ; 176(2): 317-324, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17888113

RESUMO

Recently, the three-dimensional structure of chicory (Cichorium intybus) fructan 1-exohydrolase (1-FEH IIa) in complex with its preferential substrate, 1-kestose, was determined. Unfortunately, no such data could be generated with high degree of polymerization (DP) inulin, despite several soaking and cocrystallization attempts. Here, site-directed mutagenesis data are presented, supporting the presence of an inulin-binding cleft between the N- and C-terminal domains of 1-FEH IIa. In general, enzymes that are unable to degrade high DP inulins contain an N-glycosylation site probably blocking the cleft. By contrast, inulin-degrading enzymes have an open cleft configuration. An 1-FEH IIa P294N mutant, introducing an N-glycosylation site near the cleft, showed highly decreased activity against higher DP inulin. The introduction of a glycosyl chain most probably blocks the cleft and prevents inulin binding and degradation. Besides cell wall invertases, fructan 6-exohydrolases (6-FEHs) also contain a glycosyl chain most probably blocking the cleft. Removal of this glycosyl chain by site-directed mutagenesis in Arabidopsis thaliana cell wall invertase 1 and Beta vulgaris 6-FEH resulted in a strong decrease of enzymatic activities of the mutant proteins. By analogy, glycosylation of 1-FEH IIa affected overall enzyme activity. These data strongly suggest that the presence or absence of a glycosyl chain in the cleft is important for the enzyme's stability and optimal conformation.


Assuntos
Cichorium intybus/enzimologia , Glicosídeo Hidrolases/metabolismo , Inulina/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Beta vulgaris/enzimologia , Sítios de Ligação , Parede Celular/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosilação , Inulina/química , Inulina/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-17671370

RESUMO

Arabinoxylan arabinofuranohydrolases (AXH) are alpha-L-arabinofuranosidases (EC 3.2.1.55) that specifically hydrolyse the glycosidic bond between arabinofuranosyl substituents and xylopyranosyl residues from arabinoxylan, hence their name. In this study, the crystallization and preliminary X-ray analysis of the AXH from Bacillus subtilis, a glycoside hydrolase belonging to family 43, is described. Purified recombinant AXH crystallized in the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 68.7, b = 73.7, c = 106.5 A. X-ray diffraction data were collected to a resolution of 1.55 A.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Xilanos/química , Proteínas de Bactérias/metabolismo , Cristalização , Cristalografia por Raios X , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato , Xilanos/metabolismo
14.
J Biotechnol ; 130(1): 95-105, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17445930

RESUMO

The Bacillus subtilis endoxylanase XynA (BSXY) is frequently used to improve the functionality of arabinoxylan-containing material in cereal based industries. The presence of endogenous Triticum aestivum xylanase inhibitors (TAXI-I and TAXI-II) in wheat is a real concern as they have a direct negative impact on the efficiency of this enzyme. Here, we used the recently determined structure of the complex between TAXI-I and an endoxylanase of Aspergillus niger to develop inhibitor-insensitive BSXY variants by site-directed mutagenesis of strategically chosen amino acids. We either induced steric hindrance to reject the inhibitors or interrupted key interactions with the inhibitors in the endoxylanase substrate-binding groove. The first strategy was successfully applied to position G12 where G12W combined inhibition insensitivity with unharmed catalytic performance. Variants from the second strategy showed altered inhibitor sensitivities concomitant with changes in enzyme activities and allowed to gain insight in the binding-mode of both TAXI-I and TAXI-II with BSXY.


Assuntos
Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Engenharia Genética/métodos , Triticum/enzimologia , Triticum/genética , Sequência de Aminoácidos , Bacillus subtilis/genética , Biotecnologia , Endo-1,4-beta-Xilanases/química , Ativação Enzimática , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/métodos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
15.
New Phytol ; 174(1): 90-100, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17335500

RESUMO

* Invertases and fructan exohydrolases (FEHs) fulfil important physiological functions in plants. Sucrose is the typical substrate for invertases and bacterial levansucrases but not for plant FEHs, which are usually inhibited by sucrose. * Here we report on complexes between chicory (Cichorium intybus) 1-FEH IIa with the substrate 1-kestose and the inhibitors sucrose, fructose and 2,5 dideoxy-2,5-imino-D-mannitol. Comparisons with other family GH32 and 68 enzyme-substrate complexes revealed that sucrose can bind as a substrate (invertase/levansucrase) or as an inhibitor (1-FEH IIa). * Sucrose acts as inhibitor because the O2 of the glucose moiety forms an H-linkage with the acid-base catalyst E201, inhibiting catalysis. By contrast, the homologous O3 of the internal fructose in the substrate 1-kestose forms an intramolecular H-linkage and does not interfere with the catalytic process. Mutagenesis showed that W82 and S101 are important for binding sucrose as inhibitor. * The physiological implications of the essential differences in the active sites of FEHs and invertases/levansucrases are discussed. Sucrose-inhibited FEHs show a K(i) (inhibition constant) well below physiological sucrose concentrations and could be rapidly activated under carbon deprivation.


Assuntos
Cichorium intybus/enzimologia , Glicosídeo Hidrolases/química , Proteínas de Plantas/química , Trissacarídeos/química , Sítios de Ligação , Sequência de Carboidratos , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Conformação Proteica , Sacarose/farmacologia , Trissacarídeos/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 12): 1555-63, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17139091

RESUMO

Cell-wall invertases play crucial roles during plant development. They hydrolyse sucrose into its fructose and glucose subunits by cleavage of the alpha1-beta2 glycosidic bond. Here, the structure of the Arabidopsis thaliana cell-wall invertase 1 (AtcwINV1; gene accession code At3g13790) is described at a resolution of 2.15 A. The structure comprises an N-terminal fivefold beta-propeller domain followed by a C-terminal domain formed by two beta-sheets. The active site is positioned in the fivefold beta-propeller domain, containing the nucleophile Asp23 and the acid/base catalyst Glu203 of the double-displacement enzymatic reaction. The function of the C-terminal domain remains unknown. Unlike in other GH 32 family enzyme structures known to date, in AtcwINV1 the cleft formed between both domains is blocked by Asn299-linked carbohydrates. A preliminary site-directed mutagenesis experiment (Asn299Asp) removed the glycosyl chain but did not alter the activity profile of the enzyme.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Parede Celular/enzimologia , beta-Frutofuranosidase/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Asparagina/química , Sítios de Ligação , Carboidratos , Glicosídeo Hidrolases/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Especificidade por Substrato , Difração de Raios X , beta-Frutofuranosidase/metabolismo
17.
FEBS J ; 272(22): 5872-82, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16279951

RESUMO

Wheat endoxylanase inhibitor TAXI-I inhibits microbial glycoside hydrolase family 11 endoxylanases. Crystallographic data of an Aspergillus niger endoxylanase-TAXI-I complex showed His374 of TAXI-I to be a key residue in endoxylanase inhibition. Its role in enzyme-inhibitor interaction was further investigated by site-directed mutagenesis of His374 into alanine, glutamine or lysine. Binding kinetics and affinities of the molecular interactions between A. niger, Bacillus subtilis, Trichoderma longibrachiatumendoxylanases and wild-type TAXI-I and TAXI-I His374 mutants were determined by surface plasmon resonance analysis. Enzyme-inhibitor binding was in accordance with a simple 1 : 1 binding model. Association and dissociation rate constants of wild-type TAXI-I towards the endoxylanases were in the range between 1.96 and 36.1 x 10(4)m(-1) x s(-1) and 0.72-3.60 x 10(-4) x s(-1), respectively, resulting in equilibrium dissociation constants in the low nanomolar range. Mutation of TAXI-I His374 to a variable degree reduced the inhibition capacity of the inhibitor mainly due to higher complex dissociation rate constants (three- to 80-fold increase). The association rate constants were affected to a smaller extent (up to eightfold decrease). Substitution of TAXI-I His374 therefore strongly affects the affinity of the inhibitor for the enzymes. In addition, the results show that His374 plays a critical role in the stabilization of the endoxylanase-TAXI-I complex rather than in the docking of inhibitor onto enzyme.


Assuntos
Endo-1,4-beta-Xilanases/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Triticum/enzimologia , Alanina/metabolismo , Substituição de Aminoácidos , Aspergillus niger/enzimologia , Bacillus subtilis/enzimologia , Dicroísmo Circular , Endo-1,4-beta-Xilanases/classificação , Endo-1,4-beta-Xilanases/metabolismo , Glutamina/metabolismo , Histidina/química , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Cinética , Lisina/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Pichia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Trichoderma/enzimologia
18.
Biochem Biophys Res Commun ; 335(2): 512-22, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16084833

RESUMO

Wheat grains contain Triticum aestivum xylanase inhibitor (TAXI) proteins which inhibit microbial xylanases, some of which are used in cereal based food industries. These inhibitors may play a role in plant defence. Among the TAXI isoforms described so far, TAXI-II displays a deviating inhibition specificity pattern. Here, we report on the molecular identity of TAXI-II and the basis of its inhibition specificity. Three candidate TAXI-II encoding sequences were isolated and recombinantly expressed in Pichia pastoris. To identify TAXI-II, the resulting proteins were tested against glycoside hydrolase family (GHF) 11 xylanases of Aspergillus niger (ANX) and Bacillus subtilis (BSX). One of these proteins (rTAXI-IB) inhibited both enzymes, like natural TAXI-I. The other candidates (rTAXI-IIA and rTAXI-IIB) showed an inhibition pattern typical for natural TAXI-II, only clearly inhibiting BSX. Comparative analysis of these highly similar sequences with distinct inhibition activity patterns, combined with information on the structural basis for ANX inhibition by TAXI-I [S. Sansen, C.J. De Ranter, K. Gebruers, K. Brijs, C.M. Courtin, J.A. Delcour, A. Rabijns, Structural basis for inhibition of Aspergillus niger xylanase by Triticum aestivum xylanase inhibitor-I, J. Biol. Chem. 279 (2004) 36022-36028], indicated a crucial role for Pro294 of TAXI-IIA and Gln376 of TAXI-IIB in determining the reduced inhibition activity towards ANX. Consequently, single point mutants rTAXI-IIA[P294L] and rTAXI-IIB[Q376H], both displaying the Leu/His combination corresponding to TAXI-I, were able to inhibit ANX. These results show that TAXI-II inhibition specificity bears on the identity of two key residues at positions 294 and 376, which are involved in the interaction at the -2 glycon subsite and the active site of GHF 11, respectively.


Assuntos
Endo-1,4-beta-Xilanases/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Triticum/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , DNA/química , Primers do DNA/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Glutamina/química , Glicosídeo Hidrolases/química , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Pichia/metabolismo , Plasmídeos/metabolismo , Mutação Puntual , Reação em Cadeia da Polimerase , Prolina/química , Isoformas de Proteínas , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xilano Endo-1,3-beta-Xilosidase/química
19.
FEBS J ; 272(14): 3725-32, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16008570

RESUMO

The structures of MornigaM and the MornigaM-mannose complex have been determined at 1.8 A and 2.0 A resolution, respectively. Both structures adopt the typical beta-prism motif found in other jacalin-related lectins and their tetrameric assembly closely resembles that of jacalin. The carbohydrate-binding cavity of MornigaM readily binds mannose. No major structural rearrangements can be observed in MornigaM upon binding of mannose. These results allow corroboration of the structure-function relationships within the small group of Moraceae lectins.


Assuntos
Manose/metabolismo , Morus/química , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cor , Cristalografia por Raios X , Ligação de Hidrogênio , Manose/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
20.
Plant J ; 41(3): 400-11, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659099

RESUMO

Fructan 1-exohydrolase, an enzyme involved in fructan degradation, belongs to the glycosyl hydrolase family 32. The structure of isoenzyme 1-FEH IIa from Cichorium intybus is described at a resolution of 2.35 A. The structure consists of an N-terminal fivefold beta-propeller domain connected to two C-terminal beta-sheets. The putative active site is located entirely in the beta-propeller domain and is formed by amino acids which are highly conserved within glycosyl hydrolase family 32. The fructan-binding site is thought to be in the cleft formed between the two domains. The 1-FEH IIa structure is compared with the structures of two homologous but functionally different enzymes: a levansucrase from Bacillus subtilis (glycosyl hydrolase family 68) and an invertase from Thermotoga maritima (glycosyl hydrolase family 32).


Assuntos
Cichorium intybus/enzimologia , Glicosídeo Hidrolases/química , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Sítios de Ligação , Sequência Conservada , Hexosiltransferases/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Thermotoga maritima/enzimologia , Difração de Raios X , beta-Frutofuranosidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...