Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 31(5): 203-211, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31359796

RESUMO

Objective: Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic, volatile warfare agent. Rats and guinea pigs exposed to sarin display cholinergic excitotoxicity which includes hyper-salivation, respiratory distress, tremors, seizures, and death. Here we focused on the characterization of the airways injury induced by direct exposure of the lungs to sarin vapor and compared it to that induced by the intramuscularly route. Materials and methods: Rats were exposed to sarin either in vapor (∼1LCT50, 34.2 ± 0.8 µg/l/min, 10 min) or by i.m. (∼1LD50, 80 µg/kg), and lung injury was evaluated by broncho-alveolar lavage (BAL). Results and discussion: BAL analysis revealed route-dependent effects in rats: vapor exposed animals showed elevation of inflammatory cytokines, protein, and neutrophil cells. These elevations were seen at 24 h and were still significantly higher compared to control values at 1 week following vapor exposure. These elevations were not detected in rats exposed to sarin i.m. Histological evaluation of the brains revealed typical changes following sarin poisoning independent of the route of administration. The airways damage following vapor exposure in rats was also compared to that induced in guinea pigs. The latter showed increased eosinophilia and histamine levels that constitutes an anaphylactic response not seen in rats. Conclusions: These data clearly point out the importance of using the appropriate route of administration in studying the deleterious effects of volatile nerve agents, as well as the selection of the appropriate animal species. Since airways form major target organs for the development of injury following inhalation toxicity, they should be included in any comprehensive evaluation of countermeasures efficacy.


Assuntos
Substâncias para a Guerra Química/toxicidade , Pulmão/patologia , Sarina/administração & dosagem , Sarina/toxicidade , Administração por Inalação , Animais , Lavagem Broncoalveolar , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/toxicidade , Cobaias , Inflamação , Injeções Intramusculares , Dose Letal Mediana , Pulmão/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
2.
Drug Chem Toxicol ; 42(3): 231-242, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29171299

RESUMO

Sulfur mustard (SM) is an incapacitating chemical warfare agent used in numerous conflicts around the world and it is still a major threat for both, army troops and civilians. To evaluate its multiple targets effects in experimental setup, a model of whole body exposure (WBE) to SM vapor was established in rats and its simultaneous effects on lungs and eyes as well as on general wellbeing were examined. Rats were exposed to SM vapor. Evaluation (up to 10 weeks post-exposure) included body weight, general observation, blood counts and histological analysis. Results showed that following a latency-period of several hours, rats typical symptoms developed over a period of more than one week. The initial symptoms, characterized by swollen and erythematic nose, deteriorated into extensive rhinorrhea, eye closure, excessive lacrimation as well as rhonchi, wheezing and breathing difficulties. Alopecia and behavioral abnormality were also recorded. A weight loss of up to 40% was measured within one week with spontaneous recovery to baseline level within three weeks after exposure. Blood counts revealed leukopenia during the first three days post-exposure. Histological evaluation revealed a long lasting damage to the trachea, lungs and eyes. Thus, WBE to SM, was found to closely mimic the deleterious effects of SM on the sensitive tissues previously described in human victims during WWI and the Iran-Iraq war. The use of this animal model will enable comprehensive characterization of changes in biological processes that may lead to the development of therapeutic measures to ameliorate SM induced multi-system injuries.


Assuntos
Substâncias para a Guerra Química/toxicidade , Olho/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Gás de Mostarda/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Contagem de Células Sanguíneas , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Olho/patologia , Pulmão/patologia , Masculino , Ratos Sprague-Dawley , Análise de Sobrevida , Volatilização
3.
Neurotoxicology ; 49: 132-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25976749

RESUMO

Sarin poisoned rats display a hyper-cholinergic activity including hypersalivation, tremors, seizures and death. Here we studied the time and dose effects of midazolam treatment following nerve agent exposure. Rats were exposed to sarin (1.2 LD50, 108 µg/kg, im), and treated 1 min later with TMB4 and atropine (TA 7.5 and 5 mg/kg, im, respectively). Midazolam was injected either at 1 min (1 mg/kg, im), or 1 h later (1 or 5 mg/kg i.m.). Cortical seizures were monitored by electrocorticogram (ECoG). At 5 weeks, rats were assessed in a water maze task, and then their brains were extracted for biochemical analysis and histological evaluation. Results revealed a time and dose dependent effects of midazolam treatment. Rats treated with TA only displayed acute signs of sarin intoxication, 29% died within 24h and the ECoG showed seizures for several hours. Animals that received midazolam within 1 min survived with only minor clinical signs but with no biochemical, behavioral, or histological sequel. Animals that lived to receive midazolam at 1h (87%) survived and the effects of the delayed administration were dose dependent. Midazolam 5 mg/kg significantly counteracted the acute signs of intoxication and the impaired behavioral performance, attenuated some of the inflammatory response with no effect on morphological damage. Midazolam 1mg/kg showed only a slight tendency to modulate the cognitive function. In addition, the delayed administration of both midazolam doses significantly attenuated ECoG compared to TA treatment only. These results suggest that following prolonged seizure, high dose midazolam is beneficial in counteracting adverse effects of sarin poisoning.


Assuntos
Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Inibidores da Colinesterase/toxicidade , Hipnóticos e Sedativos/administração & dosagem , Midazolam/administração & dosagem , Sarina/toxicidade , Análise de Variância , Animais , Lesões Encefálicas/fisiopatologia , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Esquema de Medicação , Eletroencefalografia , Ensaio de Imunoadsorção Enzimática , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Índice de Gravidade de Doença , Fatores de Tempo
4.
Arch Toxicol ; 87(2): 347-60, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23052190

RESUMO

Sarin, a potent organophosphate cholinesterase inhibitor, induces an array of toxic effects including convulsions. Many antidotal treatments contain anticonvulsants to block seizure activity and the ensuing brain damage. Magnesium sulfate (MGS) is used to suppress eclamptic seizures in pregnant women with hypertension and was shown to block kainate-induced convulsions. Magnesium sulfate was evaluated herein as an anticonvulsant against sarin poisoning and its efficacy was compared with the potent anticonvulsants midazolam (MDZ) and caramiphen (CRM). Rats were exposed to a convulsant dose of sarin (96 µg/kg, im) and 1 min later treated with the oxime TMB4 and atropine to increase survival. Five minutes after initiation of convulsions, MGS, CRM, or MDZ were administered. Attenuation of tonic-clonic convulsions was observed following all these treatments. However, radio-telemetric electro-corticography (ECoG) monitoring demonstrated sustained seizure activity in MGS-injected animals while this activity was completely blocked by MDZ and CRM. This disrupted brain activity was associated with marked increase in brain translocator protein levels, a marker for brain damage, measured 1 week following exposure. Additionally, histopathological analyses of MGS-treated group showed typical sarin-induced brain injury excluding the hippocampus that was partially protected. Our results clearly show that MGS demonstrated misleading features as an anticonvulsant against sarin-induced seizures. This stems from the dissociation observed between overt convulsions and seizure activity. Thus, the presence or absence of motor convulsions may be an unreliable indicator in the assessment of clinical status and in directing adequate antidotal treatments following exposure to nerve agents in battle field or terror attacks.


Assuntos
Anticonvulsivantes/farmacologia , Antídotos/farmacologia , Substâncias para a Guerra Química/intoxicação , Sulfato de Magnésio/farmacologia , Sarina/intoxicação , Convulsões/tratamento farmacológico , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Ciclopentanos/farmacologia , Epilepsia Tônico-Clônica , Masculino , Midazolam/farmacologia , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Telemetria
5.
Toxicol Appl Pharmacol ; 231(1): 17-23, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18485435

RESUMO

The highly toxic organophosphorous compound VX [O-ethyl-S-(isoporopylaminoethyl) methyl phosphonothiolate] undergoes an incomplete decontamination by conventional chemicals and thus evaporates from urban surfaces, e.g., pavement, long after the initial insult. As a consequence to these characteristics of VX, even the expected low levels should be examined for their potential to induce functional impairments including those associated with neuronal changes. In the present study, we developed an animal model for subchronic, low-dose VX exposure and evaluated its effects in rats. Animals were exposed to VX (2.25 microg/kg/day, 0.05 LD(50)) for three months via implanted mini osmotic pumps. The rapidly attained continuous and marked whole-blood cholinesterase inhibition (approximately 60%), fully recovered 96 h post pump removal. Under these conditions, body weight, blood count and chemistry, water maze acquisition task, sensitivity to the muscarinic agonist oxotremorine, peripheral benzodiazepine receptors density and brain morphology as demonstrated by routine histopathology, remained unchanged. However, animals treated with VX showed abnormal initial response in an Open Field test and a reduction (approximately 30%) in the expression of the exocytotic synaptobrevin/vesicle associate membrane protein (VAMP) in hippocampal neurons. These changes could not be detected one month following termination of exposure. Our findings indicate that following a subchronic, low-level exposure to the chemical warfare agent VX some important processes might be considerably impaired. Further research should be addressed towards better understanding of its potential health ramifications and in search of optimal countermeasures.


Assuntos
Química Encefálica/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/psicologia , Compostos Organotiofosforados/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Contagem de Células Sanguíneas , Análise Química do Sangue , Western Blotting , Peso Corporal/efeitos dos fármacos , Encéfalo/patologia , Inibidores da Colinesterase/administração & dosagem , Colinesterases/sangue , Colinesterases/metabolismo , Doença Crônica , Implantes de Medicamento , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Síndromes Neurotóxicas/fisiopatologia , Compostos Organotiofosforados/administração & dosagem , Oxotremorina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia
6.
Toxicol Appl Pharmacol ; 227(1): 155-62, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18320638

RESUMO

Sarin, a potent cholinesterase inhibitor, induces an array of toxic effects including convulsions and behavioral impairments. We report here on the protection provided by post-exposure antidotal treatments against a lethal dose of sarin (1.2xLD50) by scopolamine, benactyzine, trihexyphenidyl or caramiphen, administered 5, 10 or 20 min after the initiation of convulsions. A mixture of the oxime TMB4 and atropine (TA) was injected 1 min following poisoning a paradigm that may represent a scenario reminiscent of a terror incident. Surviving TA-treated rats exhibited marked tonic-clonic convulsions, weight loss, poor clinical status and abnormal cognitive performance as assessed by the Morris water maze. Additionally, a dramatic increase in the density of peripheral benzodiazepine receptors (PBRs), a faithful marker for neuronal damage, was noted. Animals treated 5 min after the development of toxic signs with benactyzine, trihexyphenidyl or caramiphen demonstrated control levels of PBR values, whereas scopolamine produced binding densities significantly above basal levels. Examined at the 10-min time point, scopolamine and trihexyphenidyl afforded no protection against brain damage and did not differ from TA-injected rats. All four drugs failed to significantly prevent the alterations when applied 20 min after onset of convulsions. Assessment of learning processes yielded similar results, where caramiphen exibited some protection at the 20-min time point. Our results show that caramiphen and benactyzine, agents with combined anticholinergic and antiglutamatergic pharmacological profiles, offer considerable shielding against sarin, even when their administration is delayed.


Assuntos
Antídotos/uso terapêutico , Benactizina/uso terapêutico , Substâncias para a Guerra Química/intoxicação , Inibidores da Colinesterase/intoxicação , Ciclopentanos/uso terapêutico , Sarina/intoxicação , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
7.
Toxicol Appl Pharmacol ; 227(2): 265-74, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18164360

RESUMO

Freely moving rats were exposed to sarin vapor (34.2+/-0.8 microg/l) for 10 min. Mortality at 24 h was 35% and toxic sings in the surviving rats ranged from sever (prolonged convulsions) through moderate to almost no overt signs. Some of the surviving rats developed delayed, intermittent convulsions. All rats were evaluated for long-term functional deficits in comparison to air-exposed control rats. Histological analysis revealed typical cell loss at 1 week post inhalation exposure. Neuronal inflammation was demonstrated by a 20-fold increase in prostaglandin (PGE(2)) levels 24 h following exposure that markedly decreased 6 days later. An additional, delayed increase in PGE(2) was detected at 1 month and continued to increase for up to 6 months post exposure. Glial activation following neural damage was demonstrated by an elevated level of peripheral benzodiazepine receptors (PBR) seen in the brain 4 and 6 months after exposure. At the same time muscarinic receptors were unaffected. Six weeks, four and six months post exposure behavioral evaluations were performed. In the open field, sarin-exposed rats showed a significant increase in overall activity with no habituation over days. In a working memory paradigm in the water maze, these same rats showed impaired working and reference memory processes with no recovery. Our data suggest long lasting impairment of brain functions in surviving rats following a single sarin exposure. Animals that seem to fully recover from the exposure, and even animals that initially show no toxicity signs, developed some adverse neural changes with time.


Assuntos
Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/psicologia , Sarina/toxicidade , Administração por Inalação , Animais , Encéfalo/patologia , Química Encefálica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/análise , Cognição/efeitos dos fármacos , Dinoprostona/metabolismo , Gases , Dose Letal Mediana , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Sarina/administração & dosagem , Sarina/análise
8.
J Pharmacol Exp Ther ; 313(3): 1082-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15716382

RESUMO

The protein kinase C (PKC) signaling pathway has been associated with modulation of N-metyl-D-aspartate receptor activity, motor behavior, learning, and memory, all of which are severely impaired in organophosphate (OP) intoxication. Nevertheless, the role of PKC in OP intoxication is largely unknown. The present study attempted to characterize alterations in the immunoreactivity levels of PKC isozymes expressed in different brain areas in the rat following exposure to the nerve agent sarin (1x LD(50)). Furthermore, possible neuroprotective effect of selective PKC regulating peptide after such insult was evaluated. The results indicated that a significant reduction in the immunoreactivity level of the conventional betaII-PKC and the atypical zeta-PKC was observed in frontal cortex up to 24 h postsarin and in the striatum up to 5 days postsarin exposure. This reduction was in contrast to the increase in the immuno-reactivity level of both isozymes seen in the hippocampus or thalamus. Treatment with the anticonvulsant midazolam (0.5 mg/kg) 10 min postsarin exposure markedly reduced zeta-PKC immunoreactivity level and betaII-PKC in the membrane fractions in the hippocampus. betaII-PKC peptide (380 ng/kg), known to inhibit PKC translocation and activation, attenuated sarin-induced neuropathology. These observations suggest a role for both conventional and atypical PKC isozymes in OP-induced neuropathy in the rat and further support their involvement in cell death.


Assuntos
Encéfalo/efeitos dos fármacos , Isoenzimas/análise , Proteína Quinase C/análise , Sarina/intoxicação , Animais , Encéfalo/enzimologia , Encéfalo/patologia , Encéfalo/ultraestrutura , Masculino , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley
9.
Ann N Y Acad Sci ; 1025: 584-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15542766

RESUMO

Several drugs of abuse are known to produce an array of deleterious effects, including alterations in neuronal circuitry and, ultimately, neuronal degeneration. For instance, methamphetamine was shown to induce substantial nigrostriatal dopaminergic terminal damage, including an increase in glial fibrillary acidic protein, a marker for astrocyte proliferation. Nevertheless, there was almost no attempt to define neurodegeneration by measuring the abundance of reactive microglia. In fact, some investigators fail to differentiate between astrocytes and microglia and claim glial fibrillary acidic protein to be a marker for gliosis. To date, there are numerous methods designed to assess brain neuropathologies resulting from a wide arsenal of insults. Regardless of the cause of neuronal damage, reactive glial cells always appear at and around the site of degeneration. These cells are distinguished by the exceptional abundance of peripheral benzodiazepine receptors (PBRs; omicron3 sites), particularly as compared to surrounding neurons. Measuring the binding of specific ligands to these PBRs (for example, [3H]PK 11195) offers a unique indirect marker for reliable impairment estimation in the central nervous system. Moreover, the availability of agents such as [11C]PK 11195 paved the road to in vivo animal and human brain positron emission tomography scanning, demonstrating inflammation-like processes in several diseases. Additionally, the measurement of increased binding of PBR ligands provides a faithful indicator for the behavioral and cognitive deficits accompanying neuronal injury.


Assuntos
Doenças Neurodegenerativas/metabolismo , Receptores de GABA-A/metabolismo , Animais , Benzodiazepinonas/metabolismo , Benzodiazepinonas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Drogas Ilícitas/metabolismo , Drogas Ilícitas/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia
10.
Toxicol Sci ; 75(1): 108-16, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12832655

RESUMO

Soman, a powerful inhibitor of acetylcholinesterase, causes an array of toxic effects in the central nervous system including convulsions, learning and memory impairments, and, ultimately, death. We report on the protection afforded by postexposure antidotal treatments, combined with pyridostigmine (0.1 mg/kg) pretreatment, against these consequences associated with soman poisoning. Scopolamine (0.1 mg/kg) or caramiphen (10 mg/kg) were administered 5 min after soman (1.2 LD50), whereas TAB (i.e., TMB4, atropine, and benactyzine, 7.5, 3, and 1 mg/kg, respectively) was injected in rats concomitant with the development of toxic signs. Atropine (4 mg/kg) was given to the two former groups at the onset of toxic symptoms. Caramiphen and TAB completely abolished electrographic seizure activity while scopolamine treatment exhibited only partial protection. Additionally, no significant alteration in the density of peripheral benzodiazepine receptors was noted following caramiphen or TAB administration, while scopolamine application resulted in a complex outcome: a portion of the animals demonstrated no change in the number of these sites whereas the others exhibited markedly higher densities. Cognitive functions (i.e., learning and memory processes) evaluated using the Morris water maze improved considerably by the three treatments when compared to soman-injected animals; the following rank order was observed: caramiphen > TAB > scopolamine. Additionally, statistically significant correlations (r = 0.72, r = 0.73) were demonstrated between two learning parameters and [3H]Ro5-4864 binding to brain membrane. These results show that drugs with a pharmacological profile consisting of anticholinergic and antiglutamatergic properties such as caramiphen and TAB, have a substantial potential as postexposure therapies against intoxication by organophosphates.


Assuntos
Antídotos/farmacologia , Encéfalo/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Inibidores da Colinesterase/intoxicação , Transtornos Cognitivos/prevenção & controle , Antagonistas de Aminoácidos Excitatórios/farmacologia , Soman/intoxicação , Animais , Benzodiazepinonas/metabolismo , Encéfalo/metabolismo , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/fisiopatologia , Eletroencefalografia , Técnicas In Vitro , Ligantes , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
11.
Neurotoxicology ; 23(1): 7-17, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12164550

RESUMO

Exposure to soman, a toxic organophosphate nerve agent, causes severe adverse effects and long term changes in the peripheral and central nervous systems. The goal of this study was to evaluate the ability of prophylactic treatments to block the deleterious effects associated with soman poisoning. scopolamine, a classical anticholinergic agent, or caramiphen, an anticonvulsant anticholinergic drug with anti-glutamatergic properties, in conjunction with pyridostigmine, a reversible cholinesterase inhibitor, were administered prior to sbman (1 LD50). Both caramiphen and scopolamine dramatically attenuated the process of cell death as assessed by the binding of [3H]RoS-4864 to peripheral benzodiazepine receptors (omega3 sites) on microglia and astrocytes. In addition, caramiphen but not scopolamine, blocked the soman-evoked down-regulation of [3H]AMPA binding to forebrain membrane preparations. Moreover, cognitive tests utilizing the Morris water maze, examining learning and memory processes as well as reversal learning, demonstrated that caramiphen abolished the effects of soman intoxication on learning as early as the first trial day, while scopolamine exerted its effect commencing at the second day of training. Whereas the former drug completely prevented memory deficits, the latter exhibited partial protection. Both agents equally blocked the impairment of reversal learning. In addition, there is a significant correlation between behavioral parameters and [3H]RoS-4864 binding to forebrain membrane preparations of rats, which participated in these tests (r(21) = 0.66, P < 0.001; r(21) = 0.66, P < 0.001, -0.62, P < 0.002). These results demonstrate the beneficial use of drugs exhibiting both anti-cholinergic and anti-glutamatergic properties for the protection against changes in cognitive parameters caused by nerve agent poisoning. Moreover, agents such as caramiphen may eliminate the need for multiple drug therapy in organophosphate intoxications.


Assuntos
Transtornos Cognitivos/prevenção & controle , Ciclopentanos/uso terapêutico , Hipóxia Encefálica/prevenção & controle , Escopolamina/uso terapêutico , Soman/antagonistas & inibidores , Soman/toxicidade , Animais , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/fisiopatologia , Ciclopentanos/farmacologia , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Hipóxia Encefálica/induzido quimicamente , Hipóxia Encefálica/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Escopolamina/farmacologia , Natação/fisiologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...