Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(21): 13517-13527, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753950

RESUMO

Solid-state reactions play a key role in materials science. The evolution of the structure of a single 350 nm Ni3Fe nanoparticle, i.e., its morphology (facets) as well as its deformation field, has been followed by applying multireflection Bragg coherent diffraction imaging. Through this approach, we unveiled a demixing process that occurs at high temperatures (600 °C) under an Ar atmosphere. This process leads to the gradual emergence of a highly strained core-shell structure, distinguished by two distinct lattice parameters with a difference of 0.4%. Concurrently, this transformation causes the facets to vanish, ultimately yielding a rounded core-shell nanoparticle. This final structure comprises a Ni3Fe core surrounded by a 40 nm Ni-rich outer shell due to preferential iron oxidation. Providing in situ 3D imaging of the lattice parameters at the nanometer scale while varying the temperature, this study─with the support of atomistic simulations─not only showcases the power of in situ multireflection BCDI but also provides valuable insights into the mechanisms at work during a solid-state reaction characterized by a core-shell transition.

2.
Materials (Basel) ; 16(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138670

RESUMO

Biomaterial-centered infections of orthopedic implants remain a significant burden in the healthcare system due to sedentary lifestyles and an aging population. One approach to combat infections and improve implant osteointegration is functionalizing the implant surface with anti-infective and osteoinductive agents. In this framework, Au nanoparticles are produced on the surface of Ti-6Al-4V medical alloy by solid-state dewetting of 5 nm Au film and used as the substrate for the conjugation of a model antibiotic vancomycin via a mono-thiolated poly(ethylene glycol) linker. Produced Au nanoparticles on Ti-6Al-4V surface are equiaxed with a mean diameter 19.8 ± 7.2 nm, which is shown by high-resolution scanning electron microscopy and atomic force microscopy. The conjugation of the antibiotic vancomycin, 18.8 ± 1.3 nm-thick film, is confirmed by high resolution-scanning transmission electron microscopy and X-ray photoelectron spectroscopy. Overall, showing a link between the solid-state dewetting process and surface functionalization, we demonstrate a novel, simple, and versatile method for functionalization of implant surfaces.

3.
Phys Rev E ; 108(4-2): 045001, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978707

RESUMO

Acoustic emission (AE) is a powerful experimental method for studying discrete and impulsive events termed avalanches that occur in a wide variety of materials and physical phenomena. A particular challenge is the detection of small-scale avalanches, whose associated acoustic signals are at the noise level of the experimental setup. The conventional detection approach is based on setting a threshold significantly larger than this level, ignoring "false" events with low AE amplitudes that originate from noise. At the same time, this approach overlooks small-scale events that might be true and impedes the investigation of avalanches occurring at the nanoscale, constituting the natural response of many nanoparticles and nanostructured materials. In this work, we develop a data-driven method that allows the detection of small-scale AE events, which is based on two propositions. The first includes a modification of the experimental conditions by setting a lower threshold compared to the conventional threshold, such that an abundance of small-scale events with low amplitudes are considered. Second, instead of analyzing several conventional scalar features (e.g., amplitude, duration, energy), we consider the entire waveform of each AE event and obtain an informative representation using dynamic mode decomposition. We apply the developed method to AE signals measured during the compression of platinum nanoparticles and demonstrate a significant enhancement of the detection range toward small-scale events that are below the conventional threshold.

5.
J Appl Crystallogr ; 56(Pt 4): 1032-1037, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555222

RESUMO

The CITIUS detector is a next-generation high-speed X-ray imaging detector. It has integrating-type pixels and is designed to show a consistent linear response at a frame rate of 17.4 kHz, which results in a saturation count rate of over 30 Mcps pixel-1 when operating at an acquisition duty cycle close to 100%, and up to 20 times higher with special extended acquisition modes. Here, its application for Bragg coherent diffraction imaging is demonstrated by taking advantage of the fourth-generation Extremely Brilliant Source of the European Synchrotron (ESRF-EBS, Grenoble, France). The CITIUS detector outperformed a photon-counting detector, similar spatial resolution being achieved (20 ±â€…6 nm versus 22 ±â€…9 nm) with greatly reduced acquisition times (23 s versus 200 s). It is also shown how the CITIUS detector can be expected to perform during dynamic Bragg coherent diffraction imaging measurements. Finally, the current limitations of the CITIUS detector and further optimizations for coherent imaging techniques are discussed.

6.
ACS Nano ; 17(6): 6113-6120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926832

RESUMO

At the nanoscale, the properties of materials depend critically on the presence of crystal defects. However, imaging and characterizing the structure of defects in three dimensions inside a crystal remain a challenge. Here, by using Bragg coherent diffraction imaging, we observe an unexpected anomalous {110} glide plane in two Pt submicrometer crystals grown by very different processes and having very different morphologies. The structure of the defects (type, associated glide plane, and lattice displacement) is imaged in these faceted Pt crystals. Using this noninvasive technique, both plasticity and unusual defect behavior can be probed at the nanoscale.

7.
Materials (Basel) ; 15(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36143513

RESUMO

The microstructure of a sub-micrometric gold crystal during nanoindentation is visualized by in situ multi-wavelength Bragg coherent X-ray diffraction imaging. The gold crystal is indented using a custom-built atomic force microscope. A band of deformation attributed to a shear band oriented along the (221) lattice plane is nucleated at the lower left corner of the crystal and propagates towards the crystal center with increasing applied mechanical load. After complete unloading, an almost strain-free and defect-free crystal is left behind, demonstrating a pseudo-elastic behavior that can only be studied by in situ imaging while it is invisible to ex situ examinations. The recovery is probably associated with reversible dislocations nucleation/annihilation at the side surface of the particle and at the particle-substrate interface, a behavior that has been predicted by atomistic simulations. The full recovery of the particle upon unloading sheds new light on extraordinary mechanical properties of metal nanoparticles obtained by solid-state dewetting.

8.
Nat Commun ; 13(1): 3003, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637233

RESUMO

Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.

9.
Materials (Basel) ; 15(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057318

RESUMO

During severe plastic deformation (SPD), the processes of lattice defect formation as well as their relaxation (annihilation) compete with each other. As a result, a dynamic equilibrium is established, and a steady state is reached after a certain strain value. Simultaneously, other kinetic processes act in opposite directions and also compete with each other during SPD, such as grain refinement/growth, mechanical strengthening/softening, formation/decomposition of solid solution, etc. These competing processes also lead to dynamic equilibrium and result in a steady state (saturation), albeit after different strains. Among these steady-state phenomena, particle fragmentation during the second phase of SPD has received little attention. Available data indicate that precipitate fragmentation slows down with increasing strain, though saturation is achieved at higher strains than in the case of hardness or grain size. Moreover, one can consider the SPD-driven nanocrystallization in the amorphous phase as a process that is opposite to the fragmentation of precipitates. The size of these crystalline nanoprecipitates also saturates after a certain strain. The fragmentation of precipitates during SPD is the topic of this review.

10.
Materials (Basel) ; 14(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947101

RESUMO

In this review, the phenomenon of grain boundary (GB) wetting by the second solid phase is analyzed for the high entropy alloys (HEAs). Similar to the GB wetting by the liquid phase, the GB wetting by the second solid phase can be incomplete (partial) or complete. In the former case, the second solid phase forms in the GB of a matrix, the chain of (usually lenticular) precipitates with a certain non-zero contact angle. In the latter case, it forms in the GB continuous layers between matrix grains which completely separate the matrix crystallites. The GB wetting by the second solid phase can be observed in HEAs produced by all solidification-based technologies. The particle chains or continuous layers of a second solid phase form in GBs also without the mediation of a liquid phase, for example by solid-phase sintering or coatings deposition. To describe the GB wetting by the second solid phase, the new GB tie-lines should be considered in the two- or multiphase areas in the multicomponent phase diagrams for HEAs. The GB wetting by the second solid phase can be used to improve the properties of HEAs by applying the so-called grain boundary engineering methods.

11.
Mater Horiz ; 8(4): 1272-1285, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821920

RESUMO

The performance of organic solar cells (OSC) critically depends on the morphology of the active layer. After deposition, the active layer is in a metastable state and prone to changes that lead to cell degradation. Here, a high efficiency fullerene:polymer blend is used as a model system to follow the temperature-induced morphology evolution through a series of thermal annealing treatments. Electron microscopy analysis of the nano-scale phase evolution during the early stages of thermal annealing revealed that spinodal decomposition, i.e. spontaneous phase separation with no nucleation stage, is possibly responsible for the formation of a fine scale bicontinuous structure. In the later evolution stages, large polycrystalline fullerene aggregates are formed. Optical microscopy and scattering revealed that aggregate-growth follows the Johnson-Mehl-Avrami-Kolmogorov equation indicating a heterogeneous transformation process, i.e., through nucleation and growth. These two mechanisms, spinodal decomposition vs. nucleation and growth, are mutually exclusive and their co-existence is surprising. This unexpected observation is resolved by introducing a metastable monotectic phase diagram and showing that the morphology evolution goes through two distinct and consecutive transformation processes where spinodal decomposition of the amorphous donor:acceptor blend is followed by nucleation and growth of crystalline acceptor aggregates. Finally, this unified thermodynamic and kinetic mechanism allows us to correlate the morphology evolution with OSC degradation during thermal annealing.

12.
Nat Commun ; 12(1): 5385, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508094

RESUMO

At the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. The ability to predict the structural evolution of catalytic nanocrystals during the reaction is of primary importance for catalyst design. However, to date, imaging and characterising the structure of defects inside a nanocrystal in three-dimensions and in situ during reaction has remained a challenge. We report here an unusual twin boundary migration process in a single platinum nanoparticle during CO oxidation using Bragg coherent diffraction imaging as the characterisation tool. Density functional theory calculations show that twin migration can be correlated with the relative change in the interfacial energies of the free surfaces exposed to CO. The x-ray technique also reveals particle reshaping during the reaction. In situ and non-invasive structural characterisation of defects during reaction opens new avenues for understanding defect behaviour in confined crystals and paves the way for strain and defect engineering.

13.
ACS Nano ; 15(9): 14061-14070, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34379398

RESUMO

It is well-known that in the case of bulk polycrystalline metals, a reduction in the grain size leads to material hardening, since the grain boundaries represent efficient barriers for slip transfer between the adjacent crystalline grains. Here, we show that coating single crystalline Ag nanoparticles with a thin polycrystalline Au layer leads to a weakening of the particles. Moreover, while the single crystalline Ag nanoparticles yield in a single large displacement burst when loaded in compression, their Ag-Au core-shell counterparts demonstrate a more homogeneous deformation with signs of strain hardening. Our molecular dynamics simulations demonstrate that particle weakening at low strains is attributed to the plasticity confinement in the polycrystalline shell, in which the grain boundaries play a dual role of dislocations sources and sinks. At higher strains, the plasticity within the Ag core is initiated by the dislocations nucleating at the Ag-Au interphase boundary. The widespread of energy barriers for dislocations nucleation at the interphase boundaries and their lower value as compared to the barriers for surface nucleation ensure particle weakening and more homogeneous deformation. The results of this study show that adding imperfect material to superstrong single crystalline metal nanoparticles makes them weaker. At the same time, thin nanocrystalline coatings can be employed to improve the formability of metals at the nanoscale.

14.
Nat Commun ; 12(1): 2515, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947860

RESUMO

The classic paradigm of physical metallurgy is that the addition of alloying elements to metals increases their strength. It is less known if the solution-hardening can occur in nano-scale objects, and it is totally unknown how alloying can impact the strength of defect-free faceted nanoparticles. Purely metallic defect-free nanoparticles exhibit an ultra-high strength approaching the theoretical limit. Tested in compression, they deform elastically until the nucleation of the first dislocation, after which they collapse into a pancake shape. Here, we show by experiments and atomistic simulations that the alloying of Ni nanoparticles with Co reduces their ultimate strength. This counter-intuitive solution-softening effect is explained by solute-induced local spatial variations of the resolved shear stress, causing premature dislocation nucleation. The subsequent particle deformation requires more work, making it tougher. The emerging compromise between strength and toughness makes alloy nanoparticles promising candidates for applications.

16.
ACS Nano ; 14(9): 11691-11699, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32790344

RESUMO

Controlled plastic forming of nanoscale metallic objects by applying mechanical load is a challenge, since defect-free nanocrystals usually yield at near theoretical shear strength, followed by stochastic dislocation avalanches that lead to catastrophic failure or irregular, uncontrolled shapes. Herein, instead of mechanical load, we utilize chemical stress from imbalanced interdiffusion to manipulate the shape of nanowhiskers. Bimetallic Au-Fe nanowhiskers with an ultrahigh bending strength were synthesized employing the molecular beam epitaxy technique. The one-sided Fe coating on the defect-free, single-crystalline Au nanowhisker exhibited both single- and polycrystalline regions. Annealing the bimetallic nanowhiskers at elevated temperatures led to gradual change of curvature and irreversible bending. At low homological temperatures at which grain boundary diffusion is a dominant mode of mass transport this irreversible bending was attributed to the grain boundary Kirkendall effect during the diffusion of Au along the grain boundaries in the Fe layer. At higher temperatures and longer annealing times, the bending was dominated by intensive bulk diffusion of Fe into the Au nanowhisker, accompanied by a significant migration of the Au-Fe interphase boundary toward the Fe layers. The irreversible bending was caused by the concentration dependence of the lattice parameter of the Au(Fe) alloy and by the volume effect associated with the interphase boundary migration. The results of this study demonstrate a high potential of chemical interdiffusion in the controlled plastic forming of ultrastrong metal nanostructures. By design of the thickness, microstructure, and composition of the coating as well as the parameters of heat treatment, bimetallic nanowhiskers can be bent in a controlled manner.

17.
Sci Rep ; 10(1): 12760, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728084

RESUMO

We explore the use of continuous scanning during data acquisition for Bragg coherent diffraction imaging, i.e., where the sample is in continuous motion. The fidelity of continuous scanning Bragg coherent diffraction imaging is demonstrated on a single Pt nanoparticle in a flow reactor at [Formula: see text] in an Ar-based gas flowed at 50 ml/min. We show a reduction of 30% in total scan time compared to conventional step-by-step scanning. The reconstructed Bragg electron density, phase, displacement and strain fields are in excellent agreement with the results obtained from conventional step-by-step scanning. Continuous scanning will allow to minimise sample instability under the beam and will become increasingly important at diffraction-limited storage ring light sources.

18.
Nature ; 579(7799): 350-351, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188945
19.
Nat Commun ; 9(1): 5251, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531799

RESUMO

Interface diffusion along a metal/ceramic interface present in numerous energy and electronic devices can critically affect their performance and stability. Hole formation in a polycrystalline Ni film on an α-Al2O3 substrate coupled with a continuum diffusion analysis demonstrates that Ni diffusion along the Ni/α-Al2O3 interface is surprisingly fast. Ab initio calculations demonstrate that both Ni vacancy formation and migration energies at the coherent Ni/α-Al2O3 interface are much smaller than in bulk Ni, suggesting that the activation energy for diffusion along coherent Ni/α-Al2O3 interfaces is comparable to that along (incoherent/high angle) grain boundaries. Based on these results, we develop a simple model for diffusion along metal/ceramic interfaces, apply it to a wide range of metal/ceramic systems and validate it with several ab initio calculations. These results suggest that fast metal diffusion along metal/ceramic interfaces should be common, but is not universal.

20.
Adv Sci (Weinh) ; 4(8): 1700159, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28852628

RESUMO

Some metal alloys subjected to irreversible plastic deformation can repair the inflicted damage and/or recover their original shape upon heating. The conventional shape memory effect in metallic alloys relies on collective, or "military" phase transformations. This work demonstrates a new and fundamentally different type of self-healing and shape memory in single crystalline faceted nano and microparticles of pure gold, which are plastically deformed with an atomic force microscope tip. It is shown that annealing of the deformed particles at elevated temperatures leads to nearly full recovery of their initial asymmetric polyhedral shape, which does not correspond to global energy minimum shape. The atomistic molecular dynamic simulations demonstrate that the shape recovery of the particles is controlled by the self-diffusion of gold atoms along the terrace ledges formed during the particles indentation. This ledge-guided diffusion leads to shape recovery by the irreversible diffusion process. A semiquantitative model of healing developed in this work demonstrates a good agreement with the experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...