Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Radiat Prot Dosimetry ; 194(1): 42-56, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-33989429

RESUMO

Since 2012, the European Radiation Dosimetry Group (EURADOS) has developed its Strategic Research Agenda (SRA), which contributes to the identification of future research needs in radiation dosimetry in Europe. Continued scientific developments in this field necessitate regular updates and, consequently, this paper summarises the latest revision of the SRA, with input regarding the state of the art and vision for the future contributed by EURADOS Working Groups and through a stakeholder workshop. Five visions define key issues in dosimetry research that are considered important over at least the next decade. They include scientific objectives and developments in (i) updated fundamental dose concepts and quantities, (ii) improved radiation risk estimates deduced from epidemiological cohorts, (iii) efficient dose assessment for radiological emergencies, (iv) integrated personalised dosimetry in medical applications and (v) improved radiation protection of workers and the public. This SRA will be used as a guideline for future activities of EURADOS Working Groups but can also be used as guidance for research in radiation dosimetry by the wider community. It will also be used as input for a general European research roadmap for radiation protection, following similar previous contributions to the European Joint Programme for the Integration of Radiation Protection Research, under the Horizon 2020 programme (CONCERT). The full version of the SRA is available as a EURADOS report (www.eurados.org).


Assuntos
Monitoramento de Radiação , Proteção Radiológica , Europa (Continente) , Humanos , Doses de Radiação , Radiação Ionizante , Radiometria
2.
Phys Med ; 84: 241-253, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33766478

RESUMO

Results of a Monte Carlo code intercomparison exercise for simulations of the dose enhancement from a gold nanoparticle (GNP) irradiated by X-rays have been recently reported. To highlight potential differences between codes, the dose enhancement ratios (DERs) were shown for the narrow-beam geometry used in the simulations, which leads to values significantly higher than unity over distances in the order of several tens of micrometers from the GNP surface. As it has come to our attention that the figures in our paper have given rise to misinterpretation as showing 'the' DERs of GNPs under diagnostic X-ray irradiation, this article presents estimates of the DERs that would have been obtained with realistic radiation field extensions and presence of secondary particle equilibrium (SPE). These DER values are much smaller than those for a narrow-beam irradiation shown in our paper, and significant dose enhancement is only found within a few hundred nanometers around the GNP. The approach used to obtain these estimates required the development of a methodology to identify and, where possible, correct results from simulations whose implementation deviated from the initial exercise definition. Based on this methodology, literature on Monte Carlo simulated DERs has been critically assessed.


Assuntos
Ouro , Nanopartículas Metálicas , Método de Monte Carlo , Radiografia , Dosagem Radioterapêutica , Incerteza , Raios X
3.
J Radiol Prot ; 41(1)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33406511

RESUMO

Working Group (WG) 6 'Computational Dosimetry' of the European Radiation Dosimetry Group promotes good practice in the application of computational methods for radiation dosimetry in radiation protection and the medical use of ionising radiation. Its cross-sectional activities within the association cover a large range of current topics in radiation dosimetry, including more fundamental studies of radiation effects in complex systems. In addition, WG 6 also performs scientific research and development as well as knowledge transfer activities, such as training courses. Monte Carlo techniques, including the use of anthropomorphic and other numerical phantoms based on voxelised geometrical models, play a strong part in the activities pursued in WG 6. However, other aspects and techniques, such as neutron spectra unfolding, have an important role as well. A number of intercomparison exercises have been carried out in the past to provide information on the accuracy with which computational methods are applied and whether best practice is being followed. Within the exercises that are still ongoing, the focus has changed towards assessing the uncertainty that can be achieved with these computational methods. Furthermore, the future strategy of WG 6 also includes an extension of the scope toward experimental benchmark activities and evaluation of cross-sections and algorithms, with the vision of establishing a gold standard for Monte Carlo methods used in medical and radiobiological applications.


Assuntos
Proteção Radiológica , Radiometria , Estudos Transversais , Método de Monte Carlo , Nêutrons , Doses de Radiação
4.
Radiat Meas ; 1472021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35669292

RESUMO

Organized by the European Radiation Dosimetry Group (EURADOS), a Monte Carlo code intercomparison exercise was conducted where participants simulated the emitted electron spectra and energy deposition around a single gold nanoparticle (GNP) irradiated by X-rays. In the exercise, the participants scored energy imparted in concentric spherical shells around a spherical volume filled with gold or water as well as the spectral distribution of electrons leaving the GNP. Initially, only the ratio of energy deposition with and without GNP was to be reported. During the evaluation of the exercise, however, the data for energy deposition in the presence and absence of the GNP were also requested. A GNP size of 50 nm and 100 nm diameter was considered as well as two different X-ray spectra (50 kVp and 100kVp). This introduced a redundancy that can be used to cross-validate the internal consistency of the simulation results. In this work, evaluation of the reported results is presented in terms of integral quantities that can be benchmarked against values obtained from physical properties of the radiation spectra and materials involved. The impact of different interaction cross-section datasets and their implementation in the different Monte Carlo codes is also discussed.

6.
Phys Med ; 69: 147-163, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31918367

RESUMO

PURPOSE: Targeted radiation therapy has seen an increased interest in the past decade. In vitro and in vivo experiments showed enhanced radiation doses due to gold nanoparticles (GNPs) to tumors in mice and demonstrated a high potential for clinical application. However, finding a functionalized molecular formulation for actively targeting GNPs in tumor cells is challenging. Furthermore, the enhanced energy deposition by secondary electrons around GNPs, particularly by short-ranged Auger electrons is difficult to measure. Computational models, such as Monte Carlo (MC) radiation transport codes, have been used to estimate the physical quantities and effects of GNPs. However, as these codes differ from one to another, the reliability of physical and dosimetric quantities needs to be established at cellular and molecular levels, so that the subsequent biological effects can be assessed quantitatively. METHODS: In this work, irradiation of single GNPs of 50 nm and 100 nm diameter by X-ray spectra generated by 50 and 100 peak kilovoltages was simulated for a defined geometry setup, by applying multiple MC codes in the EURADOS framework. RESULTS: The mean dose enhancement ratio of the first 10 nm-thick water shell around a 100 nm GNP ranges from 400 for 100 kVp X-rays to 600 for 50 kVp X-rays with large uncertainty factors up to 2.3. CONCLUSIONS: It is concluded that the absolute dose enhancement effects have large uncertainties and need an inter-code intercomparison for a high quality assurance; relative properties may be a better measure until more experimental data is available to constrain the models.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Radioterapia/métodos , Animais , Simulação por Computador , Elétrons , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Camundongos , Método de Monte Carlo , Neoplasias/diagnóstico por imagem , Controle de Qualidade , Radiometria , Reprodutibilidade dos Testes , Água , Raios X
7.
Phys Rev E ; 102(6-1): 062418, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466039

RESUMO

The stopping power of liquid water was measured for carbon ions with energies in the Bragg peak region using the inverted Doppler shift attenuation method. Among the semiempirical data, the results of this work agree best with the data recommended in the Errata and Addendum of ICRU Report No. 73, which is based on an I value of 78 eV for water. The agreement was worse when the present results were compared to the newer recommendation of the ICRU published in ICRU Report No. 90. The srim code seems to slightly overestimate the stopping power of water for carbon ions above 3 MeV. A semiexperimental stopping power of water for α particles was derived from the present results using the theoretical ratio between the stopping powers of water for carbon ions and α particles computed by means of the casp code. These values agree well with the experimental data for α particles within the uncertainties.

8.
J Radiol Prot ; 39(4): R37-R50, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307030

RESUMO

This paper provides a summary of the Education and Training (E&T) activities that have been developed and organised by the European Radiation Dosimetry Group (EURADOS) in recent years and in the case of Training Courses over the last decade. These E&T actions include short duration Training Courses on well-established topics organised within the activity of EURADOS Working Groups (WGs), or one-day events integrated in the EURADOS Annual Meeting (workshops, winter schools, the intercomparison participants' sessions and the learning network, among others). Moreover, EURADOS has recently established a Young Scientist Grant and a Young Scientist Award. The Grant supports young scientists by encouraging them to perform research projects at other laboratories of the EURADOS network. The Award is given in recognition of excellent work developed within the WGs' work programme. Additionally, EURADOS supports the dissemination of knowledge in radiation dosimetry by promoting and endorsing conferences such as the individual monitoring (IM) series, the neutron and ion dosimetry symposia (NEUDOS) and contributions to E&T sessions at specific events.

9.
Radiat Prot Dosimetry ; 186(1): 143-147, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30809673

RESUMO

Progress in the field of ionising radiation (IR) metrology achieved in the BioQuaRT project raised the question to what extent radiobiological investigations would benefit from metrological support of the applied methodologies. A panel of experts from the medical field, fundamental research and radiation protection attended a workshop at Physikalisch-Technische Bundesanstalt to consult on metrology needs related to biological radiation effects. The panel identified a number of metrological needs including the further development of experimental and computational techniques for micro- and nanodosimetry, together with the determination of related fundamental material properties and the establishment of rigorous uncertainty budgets. In addition to this, a call to develop a metrology support for assisting quality assurance of radiobiology experiments was expressed. Conclusions from the workshop were presented at several international conferences for further discussion with the scientific community and stakeholder groups that led to an initiative within the metrology community to establish a European Metrology Network on biological effects of IR.


Assuntos
Bioensaio/métodos , Proteção Radiológica/normas , Radiobiologia/organização & administração , Radiobiologia/normas , Radiometria/métodos , Humanos , Proteção Radiológica/métodos , Radiação Ionizante
10.
Radiat Prot Dosimetry ; 183(1-2): 22-25, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535167

RESUMO

Ionizing radiation is a peculiar perturbation when it comes to damage to biological systems: it proceeds through discrete energy depositions, over a short temporal scale and a spatial scale critical for subcellular targets as DNA, whose damage complexity determines the outcome of the exposure. This lies at the basis of the success of track structure (and nanodosimetry) and microdosimetry in radiation biology. However, such reductionist approaches cannot account for the complex network of interactions regulating the overall response of the system to radiation, particularly when effects are manifest at the supracellular level and involve long times. Systems radiation biology is increasingly gaining ground, but the gap between reductionist and holistic approaches is becoming larger. This paper presents considerations on what roles track structure and microdosimetry can have in the attempt to fill this gap, and on how they can be further exploited to interpret radiobiological data and inform systemic approaches.


Assuntos
Radiobiologia , Radiometria/métodos , Biologia de Sistemas , Dano ao DNA/efeitos da radiação , Doses de Radiação , Radiação Ionizante , Eficiência Biológica Relativa
11.
Radiat Prot Dosimetry ; 183(1-2): 55-59, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535169

RESUMO

High-Z nanomaterials, e.g. gold nanoparticles (GNPs), are being investigated worldwide for potential application in radiation imaging and therapy. Photon irradiation of cells containing GNP was shown to produce enhanced DNA damage which is believed to be related to the increased secondary electron (SE) yield and ionization density. In this work, an algorithm was developed for simulating the physical radiation damage inside the nucleus of a spherical cell model for the case of uniformly distributed GNPs within the cytoplasm. Previously calculated energy spectra of SE emerging from a single NP irradiated with different photon sources are used as input to obtain the SE energy spectrum at the surface of the cell nucleus. In a second step, the SE transport inside the cell nucleus is simulated with a track structure Monte Carlo code to obtain the spatial distribution of ionizations. The preliminary results presented here show that the developed algorithm allows for a fast calculation of the SE spectra at the cell nucleus surface, thus enabling a more realistic assessment of the ionization density inside the cell nucleus than that obtained by the simulation of a single GNP. Furthermore, the algorithm can be easily adapted to investigate both the effect of GNP clustering and the impact of GNP-GNP interactions on SE spectra.


Assuntos
Algoritmos , Núcleo Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Ouro/química , Nanopartículas Metálicas/química , Radiossensibilizantes/química , Elétrons , Modelos Biológicos , Método de Monte Carlo , Fótons
12.
Radiat Res ; 191(1): 76-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407901

RESUMO

Our understanding of radiation-induced cellular damage has greatly improved over the past few decades. Despite this progress, there are still many obstacles to fully understand how radiation interacts with biologically relevant cellular components, such as DNA, to cause observable end points such as cell killing. Damage in DNA is identified as a major route of cell killing. One hurdle when modeling biological effects is the difficulty in directly comparing results generated by members of different research groups. Multiple Monte Carlo codes have been developed to simulate damage induction at the DNA scale, while at the same time various groups have developed models that describe DNA repair processes with varying levels of detail. These repair models are intrinsically linked to the damage model employed in their development, making it difficult to disentangle systematic effects in either part of the modeling chain. These modeling chains typically consist of track-structure Monte Carlo simulations of the physical interactions creating direct damages to DNA, followed by simulations of the production and initial reactions of chemical species causing so-called "indirect" damages. After the induction of DNA damage, DNA repair models combine the simulated damage patterns with biological models to determine the biological consequences of the damage. To date, the effect of the environment, such as molecular oxygen (normoxic vs. hypoxic), has been poorly considered. We propose a new standard DNA damage (SDD) data format to unify the interface between the simulation of damage induction in DNA and the biological modeling of DNA repair processes, and introduce the effect of the environment (molecular oxygen or other compounds) as a flexible parameter. Such a standard greatly facilitates inter-model comparisons, providing an ideal environment to tease out model assumptions and identify persistent, underlying mechanisms. Through inter-model comparisons, this unified standard has the potential to greatly advance our understanding of the underlying mechanisms of radiation-induced DNA damage and the resulting observable biological effects when radiation parameters and/or environmental conditions change.


Assuntos
Dano ao DNA , Simulação por Computador , Reparo do DNA , Transferência Linear de Energia , Modelos Teóricos , Método de Monte Carlo
13.
Radiat Prot Dosimetry ; 183(1-2): 11-16, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544197

RESUMO

Within EURADOS Working Group 6 'Computational Dosimetry', the micro and nanodosimetry task group 6.2 has recently conducted a Monte Carlo (MC) exercise open to participants around the world. The aim of this exercise is to quantify the contribution to the uncertainty of micro and nanodosimetric simulation results arising from the use of different electron-impact cross-sections, and hence physical models, employed by different MC codes (GEANT4-DNA, PENELOPE, MCNP6, FLUKA, NASIC and PHITS). Comparison of the participants' simulation results for both micro and nanodosimetric quantities using different MC codes was the first step of the exercise. The deviation between results is due to different cross-sections but also different tracking methods and particle transport cut-off energies. The second step of the exercise will involve using identical cross-section datasets to account only for the other variations in the first step, thus enabling the determination of the uncertainty contribution due to different cross-sections. This paper presents a comparison of the MC simulation results obtained in the first part of the exercise. For the microdosimetric simulations, particularly in the configuration where the electron source is contained within the micrometric target, the choice of MC code has a small influence on the results. For the nanodosimetric results, on the other hand, the mean ionisation cluster size distribution (ICSD) was sensitive to the physical models used in the MC codes. The ICSD was therefore chosen to study the influence of different cross-section data on the uncertainty of simulation results.


Assuntos
Método de Monte Carlo , Radiometria/métodos , Incerteza , Simulação por Computador , Elétrons , Europa (Continente) , Radioisótopos do Iodo , Modelos Estatísticos , Modelos Teóricos , Software
14.
Radiat Prot Dosimetry ; 180(1-4): 177-181, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194515

RESUMO

Nanodosimetry is a branch of dosimetry for investigation and modeling of the interaction pattern of ionizing radiation in nanometre site-sizes (at unit density), which dates back to the 1970's (Pszona S. A track ion counter. Proceedings of Fifth Symposium on Microdosimetry EUR 5452 d-e-f, Published by the Commission of the European Communities, Luxemburg, pp. 1107-1122 (1976)). To date, the different experimental approaches have lead to developing of three fully functional nanodosimeters: the Jet Counter operated at NCBJ, the Ion Counter operated at PTB and Startrack Counter operated at INFN-LNL. Descriptions of each nanodosimeter as well as of the techniques used to investigate the track structure of ionizing particles are presented.


Assuntos
Modelos Teóricos , Nanotecnologia/instrumentação , Aceleradores de Partículas/instrumentação , Monitoramento de Radiação/instrumentação , Doses de Radiação
15.
Radiat Prot Dosimetry ; 180(1-4): 150-156, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036364

RESUMO

The biological action of ionizing charged particles is initiated at the DNA level, and the effectiveness with which the initial physical effect changes into measurable biological damage is likely ruled by the stochastics of ionizations produced by the incident ions in subcellular nanometric volumes. Based on this hypothesis, experimental nanodosimetry aims at establishing a new concept of radiation quality that builds on measurable characteristics of the particle track structure at the nanometer scale. Three different nanodosimetric detection systems have been developed to date that allow measurements of the number of ionizations produced by the passage of a primary particle in a nanometer-size gas volume (in unit density scale). Within the Italian project MITRA (MIcrodosimetry and TRAck structure), funded by the Italian Istituto Nazionale di Fisica Nucleare (INFN) and the EMRP Joint Research Project 'BioQuaRT' (Biologically Weighted Quantities in Radiotherapy), experiments have been carried out, in which the frequency distribution of ionizations produced by proton and carbon ion beams of given energy was measured with the three nanodosimetric detectors. Descriptors of the track structure can be derived from these distributions. In particular, the first moment M1, representing the mean number of ionizations produced in the target volume, and the cumulative probability Fk of measuring a number ν ≥ k of ionizations. The correlation between measured nanodosimetric quantities and experimental radiobiological data available in the literature is here presented and discussed.


Assuntos
Nanotecnologia/métodos , Nanotecnologia/tendências , Exposição Ocupacional/análise , Garantia da Qualidade dos Cuidados de Saúde , Monitoramento de Radiação/métodos , Proteção Radiológica/métodos , Animais , Células CHO , Carbono , Sobrevivência Celular , Cricetulus , Nanotecnologia/instrumentação , Prótons , Monitoramento de Radiação/instrumentação , Proteção Radiológica/instrumentação , Radiobiologia , Medição de Risco , Gestão da Segurança
16.
Phys Med Biol ; 62(19): 7569-7597, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895552

RESUMO

Ionization cluster size distributions produced in the sensitive volume of an ion-counting wall-less nanodosimeter by monoenergetic carbon ions with energies between 45 MeV and 150 MeV were measured at the TANDEM-ALPI ion accelerator facility complex of the LNL-INFN in Legnaro. Those produced by monoenergetic helium ions with energies between 2 MeV and 20 MeV were measured at the accelerator facilities of PTB and with a 241Am alpha particle source. C3H8 was used as the target gas. The ionization cluster size distributions were measured in narrow beam geometry with the primary beam passing the target volume at specified distances from its centre, and in broad beam geometry with a fan-like primary beam. By applying a suitable drift time window, the effective size of the target volume was adjusted to match the size of a DNA segment. The measured data were compared with the results of simulations obtained with the PTB Monte Carlo code PTra. Before the comparison, the simulated cluster size distributions were corrected with respect to the background of additional ionizations produced in the transport system of the ionized target gas molecules. Measured and simulated characteristics of the particle track structure are in good agreement for both types of primary particles and for both types of the irradiation geometry. As the range in tissue of the ions investigated is within the typical extension of a spread-out Bragg peak, these data are useful for benchmarking not only 'general purpose' track structure simulation codes, but also treatment planning codes used in hadron therapy. Additionally, these data sets may serve as a data base for codes modelling the induction of radiation damages at the DNA-level as they almost completely characterize the ionization component of the nanometric track structure.


Assuntos
Partículas alfa , Carbono/química , Hélio/química , Radiometria/instrumentação , Radiometria/métodos , Simulação por Computador , Método de Monte Carlo , Fenômenos Físicos
17.
Phys Med Biol ; 60(23): 9145-56, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26562133

RESUMO

The research project BioQuaRT within the European Metrology Research Programme aimed at correlating ion track structure characteristics with the biological effects of radiation and developed measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 µm. Within this framework, we investigated methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Here we make use of parameterizations that link the energy of the projectile to the ionization pattern of the track using nanodosimetric ionization cluster size distributions. They were defined with data generated by simulations of ion tracks in liquid water using the Geant4 Monte Carlo toolkit with the Geant4-DNA processes. For the clinical situation with a mixed radiation field, where particles of various energies hit a cell from several directions, we have to find macroscopic relevant mean values. They can be determined by appropriate local weighting functions for the identified parameterization. We show that a stopping power weighted mean value of the mentioned track structure properties can describe the overall track structure in a cell exposed to a mixed radiation field. The parameterization, together with the presented stopping power weighting approach, show how nanometric track structure properties could be integrated into treatment planning systems without the need to perform time consuming simulations on the nanometer level for each individual patient.


Assuntos
Algoritmos , DNA/química , DNA/efeitos da radiação , Nanotecnologia , Neoplasias/radioterapia , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Simulação por Computador , DNA/genética , Dano ao DNA/efeitos da radiação , Elétrons , Humanos , Método de Monte Carlo , Dosagem Radioterapêutica , Software
18.
Radiat Prot Dosimetry ; 166(1-4): 197-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25877532

RESUMO

The aim of the 'BioQuaRT' (Biologically weighted Quantities in RadioTherapy) project is to develop measurement techniques for characterising charged particle track structure on different length scales, and to correlate at the cellular level the track structure properties with the biological effects of radiation. This multi-scale approach will allow characterisation of the radiation qualities used in radiotherapy and the related biological effects. Charged-particle microbeam facilities were chosen as the platforms for all radiobiology experiments in the 'BioQuaRT' project, because they allow targeting single cells (or compartments of a cell) with a predefined number of ionising particles and correlating the cell-by-cell induced damage with type and energy of the radiation and with the number of ions per cell. Within this project, a novel in situ protocol was developed for the analysis of the misrepaired and/or unrepaired chromosome damage induced by charged-particle irradiations at the Physikalisch-Technische Bundesanstalt (PTB) ion microbeam facility. Among the cytogenetic biomarkers to detect and estimate radiation-induced DNA damage in radiobiology, chromosomal aberrations and micronuclei were chosen. The characteristics of the PTB irradiation system required the design of a special in situ assay: specific irradiation dishes with a base made from a biofoil 25-µm thick and only 3000-4000 cells seeded and irradiated per dish. This method was developed on Chinese hamster ovary (CHO) cells, one of the most commonly used cell lines in radiobiology in vitro experiments. The present protocol allows the simultaneous scoring of chromosome aberrations and micronuclei on the same irradiated dish. Thanks to its versatility, this method could also be extended to other radiobiological applications besides the single-ion microbeam irradiations.


Assuntos
Núcleo Celular/efeitos da radiação , Fenômenos Fisiológicos Celulares/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Dano ao DNA/efeitos da radiação , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Aceleradores de Partículas/instrumentação , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Hélio/efeitos adversos , Humanos , Transferência Linear de Energia/efeitos da radiação , Prótons , Doses de Radiação
19.
Radiat Prot Dosimetry ; 166(1-4): 253-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25897141

RESUMO

In view of the upcoming radiation therapy with carbon ions, the ionisation structure of the carbon ion track at the nanometre scale is of particular interest. Two different nanodosimeters capable of measuring track structure of ionising particles in a gas target equivalent to a nanometric site in condensed matter were involved in the presented experimental investigation, namely the NCBJ Jet Counter and the PTB Ion Counter. At the accelerator facility of the HIL in Warsaw, simulated nanometric volumes were irradiated with carbon ions of 45 and 76 MeV of kinetic energy, corresponding to a range in the tissue of ∼85 µm and ∼190 µm, respectively. The filling gas of both nanodosimeters' ionisation volume was molecular nitrogen N2, and the ionisation cluster size distributions, i.e. the statistical distribution of the number of ionizations produced by one single primary carbon ion in the filling gas, were measured for the two primary particle energies.


Assuntos
Carbono/química , Nanotecnologia/métodos , Nitrogênio , Aceleradores de Partículas/instrumentação , Radiometria/instrumentação , Calibragem , Simulação por Computador , Desenho de Equipamento , Doses de Radiação
20.
Br J Radiol ; 88(1045): 20140392, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25257709

RESUMO

Proton and ion beams are radiotherapy modalities of increasing importance and interest. Because of the different biological dose response of these radiations as compared with high-energy photon beams, the current approach of treatment prescription is based on the product of the absorbed dose to water and a biological weighting factor, but this is found to be insufficient for providing a generic method to quantify the biological outcome of radiation. It is therefore suggested to define new dosimetric quantities that allow a transparent separation of the physical processes from the biological ones. Given the complexity of the initiation and occurrence of biological processes on various time and length scales, and given that neither microdosimetry nor nanodosimetry on their own can fully describe the biological effects as a function of the distribution of energy deposition or ionization, a multiscale approach is needed to lay the foundation for the aforementioned new physical quantities relating track structure to relative biological effectiveness in proton and ion beam therapy. This article reviews the state-of-the-art microdosimetry, nanodosimetry, track structure simulations, quantification of reactive species, reference radiobiological data, cross-section data and multiscale models of biological response in the context of realizing the new quantities. It also introduces the European metrology project, Biologically Weighted Quantities in Radiotherapy, which aims to investigate the feasibility of establishing a multiscale model as the basis of the new quantities. A tentative generic expression of how the weighting of physical quantities at different length scales could be carried out is presented.


Assuntos
Radiobiologia/tendências , Radiometria/tendências , Humanos , Dosagem Radioterapêutica , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...