Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 441: 108928, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086151

RESUMO

Auditory complaints are frequently reported by individuals with mild traumatic brain injury (mTBI) yet remain difficult to detect in the absence of clinically significant hearing loss. This highlights a growing need to identify sensitive indices of auditory-related mTBI pathophysiology beyond pure-tone thresholds for improved hearing healthcare diagnosis and treatment. Given the heterogeneity of mTBI etiology and the diverse peripheral and central processes required for normal auditory function, the present study sought to determine the audiologic assessments sensitive to mTBI pathophysiology at the group level using a well-rounded test battery of both peripheral and central auditory system function. This test battery included pure-tone detection thresholds, word understanding in quiet, sentence understanding in noise, distortion product otoacoustic emissions (DPOAEs), middle-ear muscle reflexes (MEMRs), and auditory evoked potentials (AEPs), including auditory brainstem responses (ABRs), middle latency responses (MLRs), and late latency responses (LLRs). Each participant also received magnetic resonance imaging (MRI). Compared to the control group, we found that individuals with mTBI had reduced DPOAE amplitudes that revealed a compound effect of age, elevated MEMR thresholds for an ipsilateral broadband noise elicitor, longer ABR Wave I latencies for click and 4 kHz tone burst elicitors, longer ABR Wave III latencies for 4 kHz tone bursts, larger MLR Na and Nb amplitudes, smaller MLR Pb amplitudes, longer MLR Pa latencies, and smaller LLR N1 amplitudes for older individuals with mTBI. Further, mTBI individuals with combined hearing difficulty and noise sensitivity had a greater number of deficits on thalamic and cortical AEP measures compared to those with only one/no self-reported auditory symptoms. This finding was corroborated with MRI, which revealed significant structural differences in the auditory cortical areas of mTBI participants who reported combined hearing difficulty and noise sensitivity, including an enlargement of left transverse temporal gyrus (TTG) and bilateral planum polare (PP). These findings highlight the need for continued investigations toward identifying individualized audiologic assessments and treatments that are sensitive to mTBI pathophysiology.


Assuntos
Concussão Encefálica , Perda Auditiva , Humanos , Concussão Encefálica/diagnóstico , Limiar Auditivo/fisiologia , Audição/fisiologia , Ruído , Potenciais Evocados Auditivos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Emissões Otoacústicas Espontâneas
2.
Behav Brain Res ; 443: 114150, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36216141

RESUMO

Comprehensive characterizations of hand grasping behaviors after cervical spinal cord injuries are fundamental for developing rehabilitation strategies to promote recovery in spinal-cord-injured primates. We used the machine-learning-based video analysis software, DeepLabCut, to sensitively quantify kinematic aspects of grasping behavioral deficits in squirrel monkeys with C5-level spinal cord injuries. Three squirrel monkeys were trained to grasp sugar pellets from wells of varying depths before and after a left unilateral lesion of the cervical dorsal column. Using DeepLabCut, we identified post-lesion deficits in kinematic grasping behavior that included changes in digit orientation, increased variance in vertical and horizontal digit movement, and longer time to complete the task. While video-based analyses of grasping behavior demonstrated deficits in fine-scale digit function that persisted through at least 14 weeks post-injury, traditional end-point behavioral analyses showed a recovery of global hand function as evidenced by recovery of the proportion of successful retrievals by approximately 14 weeks post-injury. The combination of traditional end-point and video-based kinematic analyses provides a more comprehensive characterization of grasping behavior and highlights that global grasping performance may recover despite persistent fine-scale kinematic deficits in digit function. Machine-learning-based video analysis of kinematic digit function, in conjunction with traditional end-point behavioral analyses of grasping behavior, provide sensitive and specific indices for monitoring recovery of fine-grained hand sensorimotor behavior after spinal cord injury that can aid future studies that seek to develop targeted therapeutic interventions for improving behavioral outcomes.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Animais , Saimiri , Movimento , Medula Espinal/patologia , Força da Mão , Recuperação de Função Fisiológica
3.
J Assoc Res Otolaryngol ; 23(6): 859-873, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214911

RESUMO

The middle-ear system relies on a balance of mass and stiffness characteristics for transmitting sound from the external environment to the cochlea and auditory neural pathway. Phase is one aspect of sound that, when transmitted and encoded by both ears, contributes to binaural cue sensitivity and spatial hearing. The study aims were (i) to investigate the effects of middle-ear stiffness on the auditory brainstem neural encoding of phase in human adults with normal pure-tone thresholds and (ii) to investigate the relationships between middle-ear stiffness-induced changes in wideband acoustic immittance and neural encoding of phase. The auditory brainstem neural encoding of phase was measured using the auditory steady-state response (ASSR) with and without middle-ear stiffness elicited via contralateral activation of the middle-ear muscle reflex (MEMR). Middle-ear stiffness was quantified using a wideband acoustic immittance assay of acoustic absorbance. Statistical analyses demonstrated decreased ASSR phase lag and decreased acoustic absorbance with contralateral activation of the MEMR, consistent with increased middle-ear stiffness changing the auditory brainstem neural encoding of phase. There were no statistically significant correlations between stiffness-induced changes in wideband acoustic absorbance and ASSR phase. The findings of this study may have important implications for understanding binaural cue sensitivity and horizontal plane sound localization in audiologic and otologic clinical populations that demonstrate changes in middle-ear stiffness, including cochlear implant recipients who use combined electric and binaural acoustic hearing and otosclerosis patients.


Assuntos
Orelha Média , Testes Auditivos , Adulto , Humanos , Orelha Média/fisiologia , Testes Auditivos/métodos , Audição , Nervo Coclear , Tronco Encefálico , Limiar Auditivo/fisiologia , Estimulação Acústica
4.
Am J Audiol ; 31(2): 380-391, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35549520

RESUMO

PURPOSE: Until recently, there has been little investigation on the effects of cochlear implantation on the transmission of acoustic stimuli through the middle-ear system. Recent studies have shown that cochlear implantation decreases low-frequency acoustic absorbance, consistent with a stiffer middle-ear system postsurgery. The objectives of this study are (a) to investigate the time course of changes in acoustic absorbance post-cochlear implantation in the implanted ear and (b) to compare changes in acoustic absorbance between implanted and nonimplanted ears over time. METHOD: Seventeen adult cochlear implant (CI) recipients within 6 months of device activation participated in this study. Wideband acoustic absorbance was measured in both ears at one to six different time points from pre-implantation up to 6-month postactivation. Analyses examined (a) changes in acoustic absorbance as compared to pre-implantation and (b) differences in acoustic absorbance between implanted and nonimplanted ears over time. RESULTS: Acoustic absorbance in the implanted ear decreased postsurgery for frequencies lower than 1.5 kHz and persisted through at least 6-month postactivation. We also observed that the spectral range of decreased acoustic absorbance in the implanted ear decreased with longer time postsurgery. Differences in acoustic absorbance between implanted and nonimplanted ears occurred over a broad spectral range at the activation time point and persisted through at least 3-month postactivation, though for a narrower spectral range at the later time point. CONCLUSIONS: Cochlear implantation increased middle-ear stiffness as indicated by decreased acoustic absorbance of low-frequency acoustic power. The findings of this study are consistent with those of previous studies and may have important implications toward understanding spatial hearing and programming of acoustic components for CI-combined electric and binaural acoustic stimulation patients.


Assuntos
Implante Coclear , Implantes Cocleares , Perda Auditiva Neurossensorial , Percepção da Fala , Acústica , Adulto , Audição , Humanos , Percepção da Fala/fisiologia
5.
Ear Hear ; 43(4): 1282-1290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34860720

RESUMO

OBJECTIVES: This study identified an association between cholesteatoma and progressive sensorineural hearing loss using a large pediatric longitudinal audiologic dataset. Cholesteatoma is a potential sequela of chronic otitis media with effusion, a commonly observed auditory pathology that can contribute to hearing loss in children. The purpose of this report is to (i) describe the process of identifying the association between cholesteatoma and progressive sensorineural hearing loss in a large pediatric dataset and (ii) describe the audiologic data acquired over time in patients identified with cholesteatoma-associated progressive sensorineural hearing loss. DESIGN: Records of patients included in the Audiologic and Genetics Database (n = 175,215 patients) were examined using specified criteria defining progressive hearing loss. A linear regression model examined the log frequency of all diagnostic codes in the electronic health record assigned to patients for a progressive hearing loss cohort compared with a stable hearing loss group. Based on findings from the linear regression analysis, longitudinal audiometric air (AC) and bone conduction (BC) thresholds were extracted for groups of subjects with cholesteatoma-associated progressive (n = 58 subjects) and stable (n = 55 subjects) hearing loss to further analyze changes in hearing over time. RESULTS: The linear regression analyses identified that diagnostic codes for cholesteatoma were associated with progressive sensorineural hearing loss in children. The longitudinal audiometric data demonstrated within-subject changes in masked BC sensitivity consistent with progressive sensorineural hearing loss in children diagnosed with cholesteatoma. Additional analyses showed that mastoidectomy surgeries did not appear to contribute to the observed progressive hearing loss and that a high number of cholesteatoma patients with progressive hearing loss had normal-hearing thresholds at their first test. CONCLUSIONS: The statistical analyses demonstrated an association between cholesteatoma and pediatric progressive sensorineural hearing loss. These findings inform clinical management by suggesting that children with cholesteatoma diagnoses may be at increased risk for progressive sensorineural hearing loss and should receive continued monitoring even after a normal masked BC baseline has been established.


Assuntos
Colesteatoma , Surdez , Perda Auditiva Neurossensorial , Otite Média , Condução Óssea , Criança , Colesteatoma/complicações , Surdez/complicações , Audição , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etiologia , Humanos , Otite Média/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...