Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genet Med ; : 101173, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38828700

RESUMO

PURPOSE: We evaluated DECIDE, an online pre-test decision-support tool for diagnostic genomic testing, in non-genetics specialty clinics where there are no genetic counselors (GCs). METHODS: Families of children offered genomic testing were eligible to participate. Fifty-six parents/guardians completed DECIDE at home, at their convenience. DECIDE includes an integrated knowledge quiz and decisional conflict screen. Six months later, parents were offered follow-up questionnaires and interviews about their experiences. RESULTS: Forty parents (71%) had sufficient knowledge and no decisional conflict surrounding their testing decision but six of this group had residual questions. These six, plus 16 with decisional conflict or insufficient knowledge, saw a genetic counselor. At follow-up, little-to-no decisional regret and few negative emotions were identified in any parents. Most chose testing and described their decision as easy, yet stressful, and described many motivations for sequencing. Parents appreciated the simple comprehensive information DECIDE provided and the ability to view it in a low stress environment. CONCLUSION: DECIDE provides adequate decision-support to enable most parents to make value-consistent choices about genetic testing for their child. Parents reported that DECIDE helped to clarify motivations for pursuing (or declining) testing. DECIDE is a timely, well tested, and accessible tool in clinical settings without GCs.

2.
Genet Med ; 26(4): 101069, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38205742

RESUMO

PURPOSE: To determine real-world diagnostic rates, cost trajectories, and cost-effectiveness of exome sequencing (ES) and genome sequencing (GS) for children with developmental and/or seizure disorders in British Columbia, Canada. METHODS: Based on medical records review, we estimated real-world costs and outcomes for 491 patients who underwent standard of care (SOC) diagnostic testing at British Columbia Children's Hospital. Results informed a state-transition Markov model examining cost-effectiveness of 3 competing diagnostic strategies: (1) SOC with last-tier access to ES, (2) streamlined ES access, and (3) first-tier GS. RESULTS: Through SOC, 49.4% (95% CI: 40.6, 58.2) of patients were diagnosed at an average cost of C$11,683 per patient (95% CI: 9200, 14,166). Compared with SOC, earlier ES or GS access yielded similar or improved diagnostic rates and shorter times to genetic diagnosis, with 94% of simulations demonstrating cost savings for streamlined ES and 60% for first-tier GS. Net benefit from the perspective of the health care system was C$2956 (95% CI: -608, 6519) for streamlined ES compared with SOC. CONCLUSION: Using real-world data, we found earlier access to ES may yield more rapid genetic diagnosis of childhood developmental and seizure disorders and cost savings compared with current practice in a Canadian health care system.


Assuntos
Epilepsia , Criança , Humanos , Análise Custo-Benefício , Sequenciamento do Exoma , Colúmbia Britânica , Mapeamento Cromossômico
3.
Eur J Hum Genet ; 31(11): 1251-1260, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37644171

RESUMO

Heterozygous, pathogenic CUX1 variants are associated with global developmental delay or intellectual disability. This study delineates the clinical presentation in an extended cohort and investigates the molecular mechanism underlying the disorder in a Cux1+/- mouse model. Through international collaboration, we assembled the phenotypic and molecular information for 34 individuals (23 unpublished individuals). We analyze brain CUX1 expression and susceptibility to epilepsy in Cux1+/- mice. We describe 34 individuals, from which 30 were unrelated, with 26 different null and four missense variants. The leading symptoms were mild to moderate delayed speech and motor development and borderline to moderate intellectual disability. Additional symptoms were muscular hypotonia, seizures, joint laxity, and abnormalities of the forehead. In Cux1+/- mice, we found delayed growth, histologically normal brains, and increased susceptibility to seizures. In Cux1+/- brains, the expression of Cux1 transcripts was half of WT animals. Expression of CUX1 proteins was reduced, although in early postnatal animals significantly more than in adults. In summary, disease-causing CUX1 variants result in a non-syndromic phenotype of developmental delay and intellectual disability. In some individuals, this phenotype ameliorates with age, resulting in a clinical catch-up and normal IQ in adulthood. The post-transcriptional balance of CUX1 expression in the heterozygous brain at late developmental stages appears important for this favorable clinical course.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Camundongos , Heterozigoto , Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Proteínas Repressoras/genética , Convulsões , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
J Genet Couns ; 32(6): 1280-1287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37424058

RESUMO

In this paper we describe the analysis, planning, design, development, implementation and evaluation of a new online Graduate Certificate in Genomic Counselling and Variant Interpretation (GCGCVI) at The University of British Columbia (UBC). Genetic counselling is now a prerequisite for diagnostic genomic testing in many countries, demanding that genetic counselling practitioners have up-to-the-moment genomic counselling skills and knowledge. Current practitioners reported a desire for more training in this rapidly developing field: our international survey revealed substantial interest in online continuing education addressing themes such as testing and clinical bioinformatics, applied variant interpretation, evidence-based genomic counselling, and other emerging genomic topics. However, our market analysis found no post-graduate program globally that offered such training. To fill this gap, our oversight team of genetic counsellors and geneticists therefore guided development of curriculum and materials, and online learning specialists developed rigorous interactive asynchronous online graduate courses through collaboration with subject matter experts, following best practices in online learning design. Since launch in September 2020, we have gathered learner feedback using surveys and focus groups, and we have used learning analytics to understand how learners engaged with each other and with course materials. Together, these have helped us understand learner behaviour and guide the continuous process of design improvement to support the learning goals of this audience of professional learners. Our courses have been reviewed and approved by the UBC Faculty of Medicine, UBC Senate, and the Province of British Columbia Ministries of Advanced Education and Health, and assessed by the National Society of Genetic Counselors (NSGC, USA) and the Canadian Association of Genetic Counsellors (CAGC) to enable learners to receive North American continuing education credits. To date, 151 individuals from 18 countries have succeeded in one or more course and 43 have completed the entire certificate.


Assuntos
Currículo , Aprendizagem , Humanos , Genômica , Colúmbia Britânica , Aconselhamento
5.
HGG Adv ; 3(3): 100108, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35599849

RESUMO

Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals' primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS.

6.
Am J Hum Genet ; 109(5): 944-952, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358416

RESUMO

Calcium (Ca2+) is a universal second messenger involved in synaptogenesis and cell survival; consequently, its regulation is important for neurons. ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) belongs to the family of ATP-driven calmodulin-dependent Ca2+ pumps that participate in the regulation of intracellular free Ca2+. Here, we clinically describe a cohort of 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay. Additional common symptoms include autism, seizures, and distal limb abnormalities. Nine probands harbor missense variants, seven of which were in specific functional domains, and three individuals have nonsense variants. 3D structural protein modeling suggested that the variants have a destabilizing effect on the protein. We performed Ca2+ imaging after introducing all nine missense variants in transfected HEK293 cells and showed that all variants lead to a significant decrease in Ca2+ export capacity compared with the wild-type construct, thus proving their pathogenicity. Furthermore, we observed for the same variant set an incorrect intracellular localization of ATP2B1. The genetic findings and the overlapping phenotype of the probands as well as the functional analyses imply that de novo variants in ATP2B1 lead to a monogenic form of neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética
7.
Genes (Basel) ; 12(7)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34356069

RESUMO

Autism Spectrum Disorder (ASD) is the most common neurodevelopmental disorder in children and shows high heritability. However, how inherited variants contribute to ASD in multiplex families remains unclear. Using whole-genome sequencing (WGS) in a family with three affected children, we identified multiple inherited DNA variants in ASD-associated genes and pathways (RELN, SHANK2, DLG1, SCN10A, KMT2C and ASH1L). All are shared among the three children, except ASH1L, which is only present in the most severely affected child. The compound heterozygous variants in RELN, and the maternally inherited variant in SHANK2, are considered to be major risk factors for ASD in this family. Both genes are involved in neuron activities, including synaptic functions and the GABAergic neurotransmission system, which are highly associated with ASD pathogenesis. DLG1 is also involved in synapse functions, and KMT2C and ASH1L are involved in chromatin organization. Our data suggest that multiple inherited rare variants, each with a subthreshold and/or variable effect, may converge to certain pathways and contribute quantitatively and additively, or alternatively act via a 2nd-hit or multiple-hits to render pathogenicity of ASD in this family. Additionally, this multiple-hits model further supports the quantitative trait hypothesis of a complex genetic, multifactorial etiology for the development of ASDs.


Assuntos
Transtorno do Espectro Autista/patologia , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Proteínas do Tecido Nervoso/genética , Adolescente , Transtorno do Espectro Autista/classificação , Transtorno do Espectro Autista/genética , Criança , Feminino , Humanos , Masculino , Irmãos , Sequenciamento Completo do Genoma
8.
Am J Hum Genet ; 105(3): 631-639, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31353024

RESUMO

Notch signaling is an established developmental pathway for brain morphogenesis. Given that Delta-like 1 (DLL1) is a ligand for the Notch receptor and that a few individuals with developmental delay, intellectual disability, and brain malformations have microdeletions encompassing DLL1, we hypothesized that insufficiency of DLL1 causes a human neurodevelopmental disorder. We performed exome sequencing in individuals with neurodevelopmental disorders. The cohort was identified using known Matchmaker Exchange nodes such as GeneMatcher. This method identified 15 individuals from 12 unrelated families with heterozygous pathogenic DLL1 variants (nonsense, missense, splice site, and one whole gene deletion). The most common features in our cohort were intellectual disability, autism spectrum disorder, seizures, variable brain malformations, muscular hypotonia, and scoliosis. We did not identify an obvious genotype-phenotype correlation. Analysis of one splice site variant showed an in-frame insertion of 12 bp. In conclusion, heterozygous DLL1 pathogenic variants cause a variable neurodevelopmental phenotype and multi-systemic features. The clinical and molecular data support haploinsufficiency as a mechanism for the pathogenesis of this DLL1-related disorder and affirm the importance of DLL1 in human brain development.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Haploinsuficiência , Proteínas de Membrana/genética , Transtornos do Neurodesenvolvimento/genética , Estudos de Coortes , Feminino , Humanos , Ligantes , Masculino , Linhagem , Sequenciamento do Exoma
9.
J Child Neurol ; 33(1): 106-113, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29246092

RESUMO

PAK3-related intellectual disability is caused by mutations in the gene encoding the p21-activated kinase (PAK) protein. It is characterized by mild to moderate cognitive impairment, micro/normocephaly, and a neurobehavioral phenotype characterized by short attention span, anxiety, restlessness, aggression, and self-abusive behaviors. The authors report a patient with a novel PAK3 mutation, who presented with intellectual disability, severe automutilation, and epilepsy. His magnetic resonance imaging changes were most likely secondary to lacerations from parenchymal contusions. His behavior was difficult to manage with behavior interventions or multiple medications. After finding low levels of dopamine and borderline low serotonin metabolites in the spinal fluid, treatment with low dose L-dopa/carbidopa and 5-hydroxytryptophan significantly improved his self-injurious behavior. This is the first case of PAK3-related intellectual disability presenting with severe self-injury with improvement following treatment. The patient's response to neurotransmitter replacement therapy raises the question if this treatment intervention might help other individuals suffering genetic syndromes and self-injurious behaviors.


Assuntos
5-Hidroxitriptofano/uso terapêutico , Carbidopa/uso terapêutico , Deficiência Intelectual/fisiopatologia , Levodopa/uso terapêutico , Psicotrópicos/uso terapêutico , Comportamento Autodestrutivo/tratamento farmacológico , Comportamento Autodestrutivo/fisiopatologia , Adolescente , Encéfalo/diagnóstico por imagem , Dopamina/metabolismo , Combinação de Medicamentos , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética , Masculino , Mutação , Comportamento Autodestrutivo/diagnóstico por imagem , Comportamento Autodestrutivo/genética , Serotonina/metabolismo , Síndrome , Quinases Ativadas por p21/genética
10.
Genet Med ; 19(1): 45-52, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27195816

RESUMO

PURPOSE: Truncating mutations in the maternally imprinted, paternally expressed gene MAGEL2, which is located in the Prader-Willi critical region 15q11-13, have recently been reported to cause Schaaf-Yang syndrome, a Prader-Willi-like disease that manifests as developmental delay/intellectual disability, hypotonia, feeding difficulties, and autism spectrum disorder. The causality of the reported variants in the context of the patients' phenotypes was questioned, as MAGEL2 whole-gene deletions seem to cause little or no clinical phenotype. METHODS: Here we report a total of 18 newly identified individuals with Schaaf-Yang syndrome from 14 families, including 1 family with 3 individuals found to be affected with a truncating variant of MAGEL2, 11 individuals who are clinically affected but were not tested molecularly, and a presymptomatic fetal sibling carrying the pathogenic MAGEL2 variant. RESULTS: All cases harbor truncating mutations of MAGEL2, and nucleotides c.1990-1996 arise as a mutational hotspot, with 10 individuals and 1 fetus harboring a c.1996dupC (p.Q666fs) mutation and 2 fetuses harboring a c.1996delC (p.Q666fs) mutation. The phenotypic spectrum of Schaaf-Yang syndrome ranges from fetal akinesia to neurobehavioral disease and contractures of the small finger joints. CONCLUSION: This study provides strong evidence for the pathogenicity of truncating mutations of the paternal allele of MAGEL2, refines the associated clinical phenotypes, and highlights implications for genetic counseling for affected families.Genet Med 19 1, 45-52.


Assuntos
Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Síndrome de Prader-Willi/genética , Proteínas/genética , Adolescente , Adulto , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Cromossomos Humanos Par 15 , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Expressão Gênica , Impressão Genômica , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Fenótipo , Síndrome de Prader-Willi/fisiopatologia
11.
Mol Genet Metab ; 117(1): 42-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26647175

RESUMO

We describe neurotransmitter abnormalities in two patients with drug-resistant epilepsy resulting from deleterious de novo mutations in sodium channel genes. Whole exome sequencing identified a de novo SCN2A splice-site mutation (c.2379+1G>A, p.Glu717Gly.fs*30) resulting in deletion of exon 14, in a 10-year old male with early onset global developmental delay, intermittent ataxia, autism, hypotonia, epileptic encephalopathy and cerebral/cerebellar atrophy. In the cerebrospinal fluid both homovanillic acid and 5-hydroxyindoleacetic acid were significantly decreased; extensive biochemical and genetic investigations ruled out primary neurotransmitter deficiencies and other known inborn errors of metabolism. In an 8-year old female with an early onset intractable epileptic encephalopathy, developmental regression, and progressive cerebellar atrophy, a previously unreported de novo missense mutation was identified in SCN8A (c.5615G>A; p.Arg1872Gln), affecting a highly conserved residue located in the C-terminal of the Nav1.6 protein. Aside from decreased homovanillic acid and 5-hydroxyindoleacetic acid, 5-methyltetrahydrofolate was also found to be low. We hypothesize that these channelopathies cause abnormal synaptic mono-amine metabolite secretion/uptake via impaired vesicular release and imbalance in electrochemical ion gradients, which in turn aggravate the seizures. Treatment with oral 5-hydroxytryptophan, l-Dopa/Carbidopa, and a dopa agonist resulted in mild improvement of seizure control in the male case, most likely via dopamine and serotonin receptor activated signal transduction and modulation of glutamatergic, GABA-ergic and glycinergic neurotransmission. Neurotransmitter analysis in other sodium channelopathy patients will help validate our findings, potentially yielding novel treatment opportunities.


Assuntos
Canalopatias/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/metabolismo , Mutação de Sentido Incorreto , Neurotransmissores/deficiência , Convulsões/etiologia , Transtorno Autístico/etiologia , Transtorno Autístico/genética , Canalopatias/tratamento farmacológico , Criança , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Exoma , Feminino , Ácido Homovanílico/líquido cefalorraquidiano , Humanos , Ácido Hidroxi-Indolacético/líquido cefalorraquidiano , Masculino , Hipotonia Muscular/etiologia , Hipotonia Muscular/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurotransmissores/metabolismo , Receptores Dopaminérgicos/metabolismo , Convulsões/genética , Análise de Sequência de DNA , Canais de Sódio/deficiência , Canais de Sódio/genética , Tetra-Hidrofolatos/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...