Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 24(9): 1407-1417, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082863

RESUMO

Trimethylamine N-oxide (TMAO) is a gut microbiota-derived metabolite that enhances both platelet responsiveness and in vivo thrombosis potential in animal models, and TMAO plasma levels predict incident atherothrombotic event risks in human clinical studies. TMAO is formed by gut microbe-dependent metabolism of trimethylamine (TMA) moiety-containing nutrients, which are abundant in a Western diet. Here, using a mechanism-based inhibitor approach targeting a major microbial TMA-generating enzyme pair, CutC and CutD (CutC/D), we developed inhibitors that are potent, time-dependent, and irreversible and that do not affect commensal viability. In animal models, a single oral dose of a CutC/D inhibitor significantly reduced plasma TMAO levels for up to 3 d and rescued diet-induced enhanced platelet responsiveness and thrombus formation, without observable toxicity or increased bleeding risk. The inhibitor selectively accumulated within intestinal microbes to millimolar levels, a concentration over 1-million-fold higher than needed for a therapeutic effect. These studies reveal that mechanism-based inhibition of gut microbial TMA and TMAO production reduces thrombosis potential, a critical adverse complication in heart disease. They also offer a generalizable approach for the selective nonlethal targeting of gut microbial enzymes linked to host disease limiting systemic exposure of the inhibitor in the host.


Assuntos
Microbioma Gastrointestinal , Trombose/microbiologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Colina/farmacologia , Dieta , Microbioma Gastrointestinal/efeitos dos fármacos , Hexanóis/farmacologia , Camundongos Endogâmicos C57BL , Oxirredutases N-Desmetilantes/antagonistas & inibidores , Oxirredutases N-Desmetilantes/metabolismo , Agregação Plaquetária/efeitos dos fármacos
2.
Sci Signal ; 10(467)2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28223414

RESUMO

Cyanidin, a key flavonoid that is present in red berries and other fruits, attenuates the development of several diseases, including asthma, diabetes, atherosclerosis, and cancer, through its anti-inflammatory effects. We investigated the molecular basis of cyanidin action. Through a structure-based search for small molecules that inhibit signaling by the proinflammatory cytokine interleukin-17A (IL-17A), we found that cyanidin specifically recognizes an IL-17A binding site in the IL-17A receptor subunit (IL-17RA) and inhibits the IL-17A/IL-17RA interaction. Experiments with mice demonstrated that cyanidin inhibited IL-17A-induced skin hyperplasia, attenuated inflammation induced by IL-17-producing T helper 17 (TH17) cells (but not that induced by TH1 or TH2 cells), and alleviated airway hyperreactivity in models of steroid-resistant and severe asthma. Our findings uncover a previously uncharacterized molecular mechanism of action of cyanidin, which may inform its further development into an effective small-molecule drug for the treatment of IL-17A-dependent inflammatory diseases and cancer.


Assuntos
Antocianinas , Anti-Inflamatórios , Interleucina-17 , Receptores de Interleucina-17 , Animais , Antocianinas/química , Antocianinas/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Sítios de Ligação , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/química , Interleucina-17/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Interleucina-17/antagonistas & inibidores , Receptores de Interleucina-17/química , Receptores de Interleucina-17/imunologia , Células Th17/imunologia , Células Th17/patologia
3.
Antivir Chem Chemother ; 22(5): 217-38, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22358223

RESUMO

BACKGROUND: Nucleoside reverse transcriptase inhibitors (NRTIs) are an effective class of agents that has played a vital role in the treatment of HIV infections. (-)-ß-D-(2R,4R)-dioxolane-thymine (DOT) is a thymidine analogue that is active against wild-type and NRTI-resistant HIV-1 mutants. It has been shown that the anti-HIV activity of DOT is limited due to poor monophosphorylation. METHODS: To further enhance the anti-HIV activity of DOT, an extensive structure-activity relationship analysis of phosphoramidate prodrugs of DOT monophosphate was undertaken. These prodrugs were evaluated for anti-HIV activity using Hela CD4 ß-gal reporter cells (P4-CCR5 luc cells). RESULTS: Among the synthesized prodrugs, the 4-bromophenyl benzyloxy l-alanyl phosphate derivative of DOT was the most potent, with a 50% effective concentration of 0.089 µM corresponding to a 75-fold increase in activity relative to the parent nucleoside DOT with no increased cytotoxicity. The metabolic stability of a selected number of potent DOT phosphoramidates was also evaluated in simulated gastric fluid, simulated intestinal fluid, human plasma and liver S9 fractions. CONCLUSIONS: A series of new phosphoramidate prodrugs of DOT were prepared and evaluated as inhibitors of HIV replication in vitro. Metabolic stability studies indicated that these DOT phosphoramidate derivatives have the potential to show acceptable stability in the gastrointestinal tract, but they metabolize rapidly in the liver.


Assuntos
Amidas/farmacologia , Fármacos Anti-HIV/farmacologia , Dioxolanos/farmacologia , Ácidos Fosfóricos/farmacologia , Pró-Fármacos/farmacologia , Timina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Dioxolanos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Espectrofotometria Ultravioleta , Timina/química , Timina/farmacologia
4.
J Org Chem ; 76(20): 8311-9, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21916475

RESUMO

Prodrugs of therapeutic nucleoside monophosphates masked as phosphoramidate derivatives have become an increasingly important class of antiviral drugs in pharmaceutical research for delivering nucleotides in vitro and in vivo. Conventionally, phosphoramidate derivatives are prepared as a mixture of two diastereomers. We report a class of stable phosphoramidating reagents containing an amino acid ester and two phenolic groups, one unsubstituted and the other with electron-withdrawing substituents. The reagents can be isolated as single diastereomers and reacted with the 5'-hydroxyl group of nucleosides through selective nucleophilic displacement of the substituted phenol to prepare single diastereomer phosphoramidate products. This method has been used to prepare the HCV clinical candidate PSI-7977 in high yield and high diastereomeric purity.


Assuntos
Amidas/química , Antivirais/síntese química , Química Farmacêutica/métodos , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Ácidos Fosfóricos/química , Uridina Monofosfato/análogos & derivados , Proteínas Virais/antagonistas & inibidores , Aminoácidos/química , Antivirais/farmacologia , Cromatografia Líquida de Alta Pressão , RNA Polimerases Dirigidas por DNA/metabolismo , Elétrons , Ésteres/química , Hepacivirus/enzimologia , Hepatite C/virologia , Humanos , Espectroscopia de Ressonância Magnética , Nucleosídeos/química , Nucleotídeos/química , Fenóis/química , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Sofosbuvir , Estereoisomerismo , Relação Estrutura-Atividade , Uridina Monofosfato/síntese química , Uridina Monofosfato/farmacologia , Proteínas Virais/metabolismo
5.
J Org Chem ; 76(10): 3782-90, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21469736

RESUMO

PSI-352938 is a novel 2'-deoxy-2'-α-fluoro-2'-ß-C-methyl 3',5'-cyclic phosphate nucleotide prodrug currently under investigation for the treatment of hepatitis C virus (HCV) infection. PSI-352938 demonstrated superior characteristics in vitro that include broad genotype coverage, superior resistance profile, and high levels of active triphosphate in vivo in the liver compared to our first and second generation nucleoside inhibitors of this class. Consequently, PSI-352938 was selected for further development and an efficient and scalable synthesis was sought to support clinical development. We report an improved, diastereoselective synthesis of a key 1'-ß-nucleoside intermediate 13 via S(N)2 displacement of 1-α-bromo ribofuranose sugar 16 with the potassium salt of 6-chloro-2-amino purine and an efficient method to prepare cis-Rp cyclic phosphate (PSI-352938) in a highly stereoselective manner without any chromatographic purification. The 1-α-bromo sugar 16 was stereospecifically prepared from the corresponding 1-ß-lactol in high yield under mild bromination conditions using CBr(4)/PPh(3) (Appel reaction). The desired cis-Rp 3',5'-cyclic phosphate construction was accomplished using isopropyl phosphorodichloridate readily obtained from POCl(3) and isopropyl alcohol. The base combination of Et(3)N/NMI was identified as a key factor for producing PSI-352938 as the major (>95%) diastereomer (cis-Rp) in high yield after the final cyclization step. The current route described in this article was successfully used to produce PSI-352938 on multikilogram scale.


Assuntos
Antivirais/química , Antivirais/síntese química , Óxidos P-Cíclicos/química , Óxidos P-Cíclicos/síntese química , Hepacivirus/efeitos dos fármacos , Nucleosídeos/química , Nucleosídeos/síntese química , Pró-Fármacos/química , Pró-Fármacos/síntese química , Antivirais/farmacologia , Óxidos P-Cíclicos/farmacologia , Ciclização , Nucleosídeos/farmacologia , Pró-Fármacos/farmacologia , Estereoisomerismo , Especificidade por Substrato
6.
ACS Med Chem Lett ; 2(2): 130-5, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900291

RESUMO

Hepatitis C virus afflicts approximately 180 million people worldwide, and the development of direct acting antivirals may offer substantial benefit compared to the current standard of care. Accordingly, prodrugs of 2'-deoxy-2'-fluoro-2'-C-methylguanosine monophosphate analogues were prepared and evaluated for their anti-HCV efficacy and tolerability. These prodrugs demonstrated >1000 fold greater potency than the parent nucleoside in a cell-based replicon assay as a result of higher intracellular triphosphate levels. Further optimization led to the discovery of the clinical candidate PSI-353661, which has demonstrated strong in vitro inhibition against HCV without cytotoxicity and equipotent activity against both the wild type and the known S282T nucleoside/tide resistant replicon. PSI-353661 is currently in preclinical development for the treatment of HCV.

7.
Bioorg Med Chem Lett ; 20(24): 7376-80, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21050754

RESUMO

A series of novel 2'-deoxy-2'-α-fluoro-2'-ß-C-methyl 3',5'-cyclic phosphate nucleotide prodrug analogs were synthesized and evaluated for their in vitro anti-HCV activity and safety. These prodrugs demonstrated a 10-100-fold greater potency than the parent nucleoside in a cell-based replicon assay due to higher cellular triphosphate levels. Our structure-activity relationship (SAR) studies provided compounds that gave high levels of active triphosphate in rat liver when administered orally to rats. These studies ultimately led to the selection of the clinical development candidate 24a (PSI-352938).


Assuntos
Antivirais/química , Óxidos P-Cíclicos/química , Inibidores Enzimáticos/química , Hepacivirus/enzimologia , Nucleosídeos/química , Nucleotídeos Cíclicos/química , Pró-Fármacos/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Administração Oral , Animais , Antivirais/farmacocinética , Antivirais/toxicidade , Linhagem Celular Tumoral , Cristalografia por Raios X , Óxidos P-Cíclicos/farmacocinética , Óxidos P-Cíclicos/toxicidade , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/toxicidade , Humanos , Conformação Molecular , Nucleosídeos/farmacocinética , Nucleosídeos/toxicidade , Nucleotídeos Cíclicos/síntese química , Nucleotídeos Cíclicos/toxicidade , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ratos , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
8.
J Med Chem ; 53(19): 7202-18, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20845908

RESUMO

Hepatitis C virus (HCV) is a global health problem requiring novel approaches for effective treatment of this disease. The HCV NS5B polymerase has been demonstrated to be a viable target for the development of HCV therapies. ß-d-2'-Deoxy-2'-α-fluoro-2'-ß-C-methyl nucleosides are selective inhibitors of the HCV NS5B polymerase and have demonstrated potent activity in the clinic. Phosphoramidate prodrugs of the 5'-phosphate derivative of the ß-d-2'-deoxy-2'-α-fluoro-2'-ß-C-methyluridine nucleoside were prepared and showed significant potency in the HCV subgenomic replicon assay (<1 µM) and produced high levels of triphosphate 6 in primary hepatocytes and in the livers of rats, dogs, and monkeys when administered in vivo. The single diastereomer 51 of diastereomeric mixture 14 was crystallized, and an X-ray structure was determined establishing the phosphoramidate stereochemistry as Sp, thus correlating for the first time the stereochemistry of a phosphoramidate prodrug with biological activity. 51 (PSI-7977) was selected as a clinical development candidate.


Assuntos
Antivirais/síntese química , Hepacivirus/efeitos dos fármacos , Pró-Fármacos/síntese química , Uridina Monofosfato/análogos & derivados , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Linhagem Celular , Cristalografia por Raios X , Cães , Farmacorresistência Viral , Ésteres , Hepacivirus/genética , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Fígado/metabolismo , Macaca fascicularis , Mutação , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ratos , Replicon , Sofosbuvir , Estereoisomerismo , Relação Estrutura-Atividade , Uridina Monofosfato/síntese química , Uridina Monofosfato/farmacocinética , Uridina Monofosfato/farmacologia , Proteínas não Estruturais Virais/genética
9.
Bioorg Med Chem Lett ; 20(15): 4539-43, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20580554

RESUMO

Hepatitis C virus afflicts approximately 180 million people worldwide and currently there are no direct acting antiviral agents available to treat this disease. Our first generation nucleoside HCV inhibitor, RG7128 has already established proof-of-concept in the clinic and is currently in phase IIb clinical trials. As part of our continuing efforts to discover novel anti-HCV agents, 3',4'-oxetane cytidine and adenosine nucleosides were prepared as inhibitors of HCV RNA replication. These nucleosides were shown not to be inhibitors of HCV as determined in a whole cell subgenomic replicon assay. However, 2'-mono/diflouro analogs, 4, 5, and 6 were readily phosphorylated to their monophosphate metabolites by deoxycytidine kinase and their triphosphate derivatives were shown to be inhibitors of HCV NS5B polymerase in vitro. Lack of anti-HCV activity in the replicon assay may be due to the inability of the monophosphates to be converted to their corresponding diphosphates.


Assuntos
Antivirais/síntese química , Éteres Cíclicos/química , Hepacivirus/efeitos dos fármacos , Nucleosídeos/química , Antivirais/química , Antivirais/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hepacivirus/enzimologia , Nucleosídeos/síntese química , Nucleosídeos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
10.
J Org Chem ; 74(17): 6819-24, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19642660

RESUMO

R7128 is the prodrug of 2'-deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130), a potent and selective inhibitor of HCV NS5B polymerase. Currently, R7128 is in clinical trials for the treatment of HCV infection. To support clinical development efforts, we needed an efficient and scalable synthesis of PSI-6130. We describe an improved, diastereoselective synthetic route starting with protected d-glyceraldehyde. No chiral reagents or catalysts were used to produce the three new contiguous stereocenters. Introduction of fluorine at the C-2 tertiary carbon was accomplished in a highly regio- and stereoselective manner through nucleophilic substitution on a cyclic sulfate. Scale-limiting chromatographic purifications were eliminated through the use of crystalline intermediates.


Assuntos
Antivirais/síntese química , Química Farmacêutica/métodos , Desoxicitidina/análogos & derivados , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Carbono/química , Química Orgânica/métodos , Cromatografia/métodos , Desoxicitidina/síntese química , Desoxicitidina/química , Desenho de Fármacos , Flúor/química , Gliceraldeído/química , Glicosilação , Lactonas , Modelos Químicos , Fosforanos/química , Estereoisomerismo
11.
J Med Chem ; 48(20): 6454-60, 2005 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16190771

RESUMO

Several 6- and 7-monosubstituted N3,5'-cyclo-4-(beta-d-ribofuranosyl)-vic-triazolo[4,5-b]pyridin-5-one derivatives as well as the 5-thiono analogue were synthesized, providing structure-anti-hepatitis C virus (HCV) activity relationships for the series. Among the compounds synthesized, the 6-bromo, 7-methylamino, and 5-thiono analogues exhibited more potent anti-HCV activity in an HCV subgenomic replicon cell based assay (EC90 = 1.9, 7.4, and 10.0 microM, respectively) than the lead compound N3,5'-cyclo-4-(beta-D-ribofuranosyl)-vic-triazolo[4,5-b]pyridin-5-one (EC90 = 79.8 microM).


Assuntos
Antivirais/síntese química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Hepacivirus/efeitos dos fármacos , Nucleosídeos/síntese química , Antivirais/química , Antivirais/farmacologia , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Hepacivirus/genética , Humanos , Nucleosídeos/química , Nucleosídeos/farmacologia , RNA Viral/antagonistas & inibidores , Relação Estrutura-Atividade
12.
Antivir Chem Chemother ; 15(1): 43-55, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15074714

RESUMO

N4-Hydroxycytidine (NHC) was recently reported to have anti-pestivirus and anti-hepacivirus activity. It is thought that this nucleoside acts as a weak alternative substrate for the hepatitis C virus (HCV) polymerase. In addition to NHC, 3'-deoxyuridine (3'-dU) was found to inhibit bovine diarrhoea virus (BVDV) production by 1 log10 at 37.2 microM. These initial findings prompted the synthesis of beta-D and beta-L analogues of (i) base-modified 3'-deoxy-NHC; (ii) 3'-deoxyuridine; and 3'-deoxycytidine. The antiviral activity of these 42 nucleosides was evaluated against BVDV and HCV bicistronic replicon in cell culture. Among the NHC analogues, the antiviral activity observed for the beta-L-3'-deoxy-5-fluoro-derivative 1-(3-deoxy-beta-L-erythro-pentofuranosyl)-5-fluoro-4-hydroxyaminopyrimidin-2(1H)-one and the beta-D-3'-deoxy-5-iodo-derivative 1-(3-deoxy-beta-D-erythro-pentofuranosyl)-5-iodocytosine in the replicon system (1 log10 reduction at 100 microM) was due to the concomitant toxicity towards intracellular ribosomal RNA levels (CC90 equal or lower than the EC90). In conclusion, none of the newly synthesized derivatives exhibited enhanced antiviral activity compared to the parent nucleoside NHC.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Nucleosídeos de Pirimidina/síntese química , Nucleosídeos de Pirimidina/farmacologia , Animais , Antivirais/química , Bovinos , Linhagem Celular , Estrutura Molecular , Nucleosídeos de Pirimidina/química , Estereoisomerismo
13.
Curr Med Chem ; 11(6): 775-93, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15032731

RESUMO

Antimicrobial resistance in hospital and community settings is growing at an alarming rate and has been attributed to such organisms as methicillin-resistant staphylococcus aureus, staphylococci with decreased susceptibility to vancomycin, vancomycin-resistant enterococci, multi-drug resistant pseudomonas spp., klebsiella spp., enterobacter spp, and acinetobacter spp., as well as Streptococcus pneumoniae with decreased susceptibility to penicillin and other antibacterials. To address the need for new therapies to combat resistant organisms, drug companies are refocusing their discovery efforts on developing novel agents with new mechanisms of action. The hope is that rapidly emerging technologies including combinatorial chemistry, high throughput screening, proteomics and microbial genomics will have a positive impact on antimicrobial drug discovery. These technologies should aid in the identification of novel drug targets and compounds with unique mechanisms of action other than those currently provided by the traditional antibiotics. Nucleosides are one class of compounds worthy of further investigation as antibacterials since some derivatives have shown moderate to good activity against specific bacterial strains. For example, 5'-peptidyl nucleoside derivatives can inhibit peptide deformylase, an enzyme essential for bacterial survival that is not vital to human cells. This review also includes a list of miscellaneous nucleosides that have been synthesized as potential antibacterials. More detailed investigations on structure, as it relates to the antimicrobial activity of the various classes of nucleosides, need to be conducted in order to maximize the potential of developing a potent nucleoside for the treatment of bacterial infections. This review begins with an introduction to terms followed by discussions regarding the general background and relevance for developing novel antimicrobial agents. Challenges facing the antimicrobial drug discovery process are discussed along with relevant drug targets. An overview of nucleoside chemistry as it relates to antimicrobial activity is presented, followed by a discussion of the evidence which supports the potential of this class of compounds to yield the novel antimicrobial therapies needed in the new millennium.


Assuntos
Anti-Infecciosos , Desenho de Fármacos , Resistência Microbiana a Medicamentos , Nucleosídeos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Técnicas de Química Combinatória , Doenças Transmissíveis/tratamento farmacológico , Resistência Microbiana a Medicamentos/genética , Humanos , Nucleosídeos/química , Nucleosídeos/farmacologia
14.
Antivir Chem Chemother ; 14(2): 81-90, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12856919

RESUMO

A series of 2',3'-dideoxy (D2) and 2',3'-didehydro-2',3'-dideoxy (D4) 5-fluorocytosine nucleosides modified with substituted benzoyl, heteroaromatic carbonyl, cycloalkylcarbonyl and alkanoyl at the N4-position were synthesized and evaluated for anti-human immunodeficiency virus type 1 (HIV-1) and anti-hepatitis B virus (HBV) activity in vitro. For most D2-nucleosides, N4-substitutions improved the anti-HIV-1 activity markedly without increasing the cytotoxicity. In the D4-nucleosides series, some of the substituents at the N4-position enhanced the anti-HIV-1 activity with a modest increase in the cytotoxicity. The most potent and selective N4-modified nucleoside for the D2-series was N4-p-iodobenzoyl-D2FC, which had a 46-fold increase in anti-HIV-1 potency in MT-2 cells compared to the parent nucleoside D-D2FC. In the D4-series, N4-p-bromobenzoyl-D4FC was 12-fold more potent in MT-2 cells compared to the parent nucleoside D-D4FC. All eight N4-p-halobenzoyl-substituted D2- and D4-nucleosides evaluated against HBV in HepAD38 cells demonstrated equal or greater potency than the two parental compounds, D-D2FC and D-D4FC. The N4-modification especially in the D2-nucleoside series containing the N4-nicotinoyl, o-nitrobenzoyl and n-butyryl showed a significant reduction in mitochondrial toxicity relative to the parent nucleoside analogue. Although the 5'-triphosphate of the parent compound (D-D4FC-TP) was formed from the N4-acyl-D4FC analogues in different cells, the levels of the 5'-triphosphate nucleotide did not correlate with the cell-derived 90% effective antiviral concentrations (EC90), suggesting that a direct interaction of the triphosphates of these N4-acyl nucleosides was involved in the antiviral activity.


Assuntos
Antivirais/farmacologia , Zalcitabina/farmacologia , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Antivirais/síntese química , Antivirais/química , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Relação Dose-Resposta a Droga , HIV-1/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Modelos Químicos , Células Vero , Zalcitabina/análogos & derivados , Zalcitabina/síntese química , Zalcitabina/química
15.
Antimicrob Agents Chemother ; 47(1): 244-54, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12499198

RESUMO

A base-modified nucleoside analogue, beta-D-N(4)-hydroxycytidine (NHC), was found to have antipestivirus and antihepacivirus activities. This compound inhibited the production of cytopathic bovine viral diarrhea virus (BVDV) RNA in a dose-dependant manner with a 90% effective concentration (EC(90)) of 5.4 microM, an observation that was confirmed by virus yield assays (EC(90) = 2 microM). When tested for hepatitis C virus (HCV) replicon RNA reduction in Huh7 cells, NHC had an EC(90) of 5 microM on day 4. The HCV RNA reduction was incubation time and nucleoside concentration dependent. The in vitro antiviral effect of NHC was additive with recombinant alpha interferon-2a and could be prevented by the addition of exogenous cytidine and uridine but not of other natural ribo- or 2'-deoxynucleosides. When HCV RNA replicon cells were cultured in the presence of increasing concentrations of NHC (up to 40 micro M) for up to 45 cell passages, no resistant replicon was selected. Similarly, resistant BVDV could not be selected after 20 passages. NHC was phosphorylated to the triphosphate form in Huh7 cells, but in cell-free HCV NS5B assays, synthetic NHC-triphosphate (NHC-TP) did not inhibit the polymerization reaction. Instead, NHC-TP appeared to serve as a weak alternative substrate for the viral polymerase, thereby changing the mobility of the product in polyacrylamide electrophoresis gels. We speculate that incorporated nucleoside analogues with the capacity of changing the thermodynamics of regulatory secondary structures (with or without introducing mutations) may represent an important class of new antiviral agents for the treatment of RNA virus infections, especially HCV.


Assuntos
Antivirais/farmacologia , Citidina/análogos & derivados , Citidina/farmacologia , Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/farmacocinética , Bovinos , Células Cultivadas , Citidina/síntese química , Citidina/farmacocinética , Vírus da Diarreia Viral Bovina/genética , Feminino , Camundongos , RNA Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...