Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 11(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314319

RESUMO

The use of plastics has increased over the years, thus resulting in a large volume of plastic waste being generated and accumulated in the environment. Due to its non-biodegradability and persistence, recycling processes have become one of the sustainable solutions for preventing environmental deterioration. Plastic wastes, including high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), and polyethylene terephthalate (PET), were collected from industrial sector and used as additional ingredients to improve concrete properties. Prior to concrete processing, an increase in wettability of plastic fibers using nonionic surfactant, Dehydol LS-12, was investigated. At the optimal concentration of 10 times of the critical micelle concentration (CMC), an interfacial tension and a contact angle were reduced to 31⁻32 mN/m and 65°â»68°, respectively. Properties of concrete were determined and compared to those of the mortar samples. Porosity was found to increase with higher volume fraction of plastic fibers, whereas decreases in workability, bulk density, thermal conductivity, splitting tensile strength, and compressive strength were encountered. The lowest thermal conductivity was recorded for concrete samples prepared with 30% by volume of LDPE fibers, and the rest in descending order were HDPE, PP, and PET, respectively. Furthermore, the maximal inclusions of plastic fibers were 5% for HDPE and LDPE, 10% for PP, and 50% for PET so as to satisfy the precast concrete wall requirements.

2.
PLoS One ; 10(5): e0128043, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26020967

RESUMO

The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas.


Assuntos
Bactérias/genética , Fungos/genética , Genes Bacterianos , Genes Fúngicos , Sedimentos Geológicos/microbiologia , Chuva/microbiologia , Microbiologia da Água , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Inundações , Fungos/classificação , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Consórcios Microbianos , Filogenia , RNA Ribossômico 16S/genética , Bactérias Redutoras de Enxofre/fisiologia , Tailândia , Clima Tropical
3.
J Hazard Mater ; 118(1-3): 185-95, 2005 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-15721543

RESUMO

Despite the fact that the solidification/stabilization of arsenic containing wastes with Portland cement and lime has an extensively documented history of use, the physical and chemical phenomena as a result of the interaction between arsenic and cement components have not been fully characterized. The study investigates the behavior of synthesized arsenic-iron hydroxide sludge, the by-product of arsenic removal by coagulation with ferric chloride, in solidified/stabilized matrices as well as its binding mechanisms by exploring the cementitious matrices in the micro-scale by scanning electron microscopy equipped with energy dispersive X-ray spectrometer (SEM-EDS). It was revealed that arsenic can be chemically fixed into cementitious environment of the solidified/stabilized matrices by three important immobilization mechanisms; sorption onto C-S-H surface, replacing SO4(2-) of ettringite, and reaction with cement components to form calcium-arsenic compounds, the solubility limiting phases.


Assuntos
Arsênio/química , Materiais de Construção , Ferro/química , Poluentes do Solo/análise , Arsênio/análise , Ferro/análise , Microscopia Eletrônica de Varredura , Gerenciamento de Resíduos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...