Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Pol ; 48(2): 313-21, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11732603

RESUMO

Translation is the process by which ribosomes direct protein synthesis using the genetic information contained in messenger RNA (mRNA). Transfer RNAs (tRNAs) are charged with an amino acid and brought to the ribosome, where they are paired with the corresponding trinucleotide codon in mRNA. The amino acid is attached to the nascent polypeptide and the ribosome moves on to the next codon. Thus, the sequential pairing of codons in mRNA with tRNA anticodons determines the order of amino acids in a protein. It is therefore imperative for accurate translation that tRNAs are only coupled to amino acids corresponding to the RNA anticodon. This is mostly, but not exclusively, achieved by the direct attachment of the appropriate amino acid to the 3'-end of the corresponding tRNA by the aminoacyl-tRNA synthetases. To ensure the accurate translation of genetic information, the aminoacyl-tRNA synthetases must display an extremely high level of substrate specificity. Despite this highly conserved function, recent studies arising from the analysis of whole genomes have shown a significant degree of evolutionary diversity in aminoacyl-tRNA synthesis. For example, non-canonical routes have been identified for the synthesis of Asn-tRNA, Cys-tRNA, Gln-tRNA and Lys-tRNA. Characterization of non-canonical aminoacyl-tRNA synthesis has revealed an unexpected level of evolutionary divergence and has also provided new insights into the possible precursors of contemporary aminoacyl-tRNA synthetases.


Assuntos
Evolução Molecular , Genômica , Aminoacil-RNA de Transferência/biossíntese , Aminoacil-RNA de Transferência/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Filogenia , Biossíntese de Proteínas , RNA Mensageiro/genética
2.
J Biol Chem ; 276(49): 45862-7, 2001 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-11585842

RESUMO

Aminoacyl-tRNA is generally formed by aminoacyl-tRNA synthetases, a family of 20 enzymes essential for accurate protein synthesis. However, most bacteria generate one of the two amide aminoacyl-tRNAs, Asn-tRNA or Gln-tRNA, by transamidation of mischarged Asp-tRNA(Asn) or Glu-tRNA(Gln) catalyzed by a heterotrimeric amidotransferase (encoded by the gatA, gatB, and gatC genes). The Chlamydia trachomatis genome sequence reveals genes for 18 synthetases, whereas those for asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase are absent. Yet the genome harbors three gat genes in an operon-like arrangement (gatCAB). We reasoned that Chlamydia uses the gatCAB-encoded amidotransferase to generate both Asn-tRNA and Gln-tRNA. C. trachomatis aspartyl-tRNA synthetase and glutamyl-tRNA synthetase were shown to be non-discriminating synthetases that form the misacylated tRNA(Asn) and tRNA(Gln) species. A preparation of pure heterotrimeric recombinant C. trachomatis amidotransferase converted Asp-tRNA(Asn) and Glu-tRNA(Gln) into Asn-tRNA and Gln-tRNA, respectively. The enzyme used glutamine, asparagine, or ammonia as amide donors in the presence of either ATP or GTP. These results suggest that C. trachomatis employs the dual specificity gatCAB-encoded amidotransferase and 18 aminoacyl-tRNA synthetases to create the complete set of 20 aminoacyl-tRNAs.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Chlamydia trachomatis/genética , RNA Bacteriano/biossíntese , RNA de Transferência de Asparagina/biossíntese , RNA de Transferência de Glutamina/biossíntese , Aminoacil-tRNA Sintetases/isolamento & purificação , Chlamydia trachomatis/enzimologia , Eletroforese em Gel de Poliacrilamida , Genes Bacterianos
3.
FEBS Lett ; 500(3): 129-31, 2001 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-11445070

RESUMO

The gatC, gatA and gatB genes encoding the three subunits of glutamyl-tRNA(Gln) amidotransferase from Acidithiobacillus ferrooxidans, an acidophilic bacterium used in bioleaching of minerals, have been cloned and expressed in Escherichia coli. As in Bacillus subtilis the three gat genes are organized in an operon-like structure in A. ferrooxidans. The heterologously overexpressed enzyme converts Glu-tRNA(Gln) to Gln-tRNA(Gln) and Asp-tRNA(Asn) to Asn-tRNA(Asn). Biochemical analysis revealed that neither glutaminyl-tRNA synthetase nor asparaginyl-tRNA synthetase is present in A. ferrooxidans, but that glutamyl-tRNA synthetase and aspartyl-tRNA synthetase enzymes are present in the organism. These data suggest that the transamidation pathway is responsible for the formation of Gln-tRNA and Asn-tRNA in A. ferrooxidans.


Assuntos
Asparagina/genética , Aspartato-tRNA Ligase , Gammaproteobacteria/enzimologia , Glutamina/genética , Transferases de Grupos Nitrogenados/metabolismo , Clonagem Molecular , Códon/genética , Ativação Enzimática/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Gammaproteobacteria/genética , Transferases de Grupos Nitrogenados/genética , Biossíntese de Proteínas/fisiologia , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Aminoacil-RNA de Transferência/biossíntese , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato/fisiologia
4.
Toxicology ; 160(1-3): 181-9, 2001 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-11246138

RESUMO

The availability of numerous complete microbial genome sequences has profoundly altered our understanding of a number of fundamental biological processes. For example the enzymes involved in aminoacyl-tRNA (AA-tRNA) synthesis, the key process responsible for the accuracy of protein synthesis, have been found to be highly species-specific. In particular, a number of pathogens contain certain pathways of AA-tRNA synthesis that are unrelated to those found in their mammalian hosts. Since AA-tRNA synthesis is indispensable for cell viability, the discovery of pathogen-specific pathways and enzymes presents novel therapeutic and diagnostic targets. Here we will review recent advances in the elucidation of AA-tRNA synthesis pathways and discuss the possible pharmaceutical exploitation of these discoveries. In particular, the integration of genomic and biochemical approaches to identify novel targets for the treatment of Chlamydial infections and the diagnosis and treatment of Lyme disease will be presented.


Assuntos
Aminoacil-tRNA Sintetases/genética , Grupo Borrelia Burgdorferi/genética , Chlamydia trachomatis/genética , Genoma Bacteriano , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Grupo Borrelia Burgdorferi/enzimologia , Grupo Borrelia Burgdorferi/patogenicidade , Infecções por Chlamydia/tratamento farmacológico , Chlamydia trachomatis/enzimologia , Chlamydia trachomatis/patogenicidade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Doença de Lyme/diagnóstico , Doença de Lyme/tratamento farmacológico , Proteoma/biossíntese , Proteoma/efeitos dos fármacos , RNA de Transferência/biossíntese
6.
FEBS Lett ; 476(3): 140-4, 2000 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-10913601

RESUMO

Thermus thermophilus strain HB8 is known to have a heterodimeric aspartyl-tRNA(Asn) amidotransferase (Asp-AdT) capable of forming Asn-tRNA(Asn) [Becker, H.D. and Kern, D. (1998) Proc. Natl. Acad. Sci. USA 95, 12832-12837]. Here we show that, like other bacteria, T. thermophilus possesses the canonical set of amidotransferase (AdT) genes (gatA, gatB and gatC). We cloned and sequenced these genes, and constructed an artificial operon for overexpression in Escherichia coli of the thermophilic holoenzyme. The overproduced T. thermophilus AdT can generate Gln-tRNA(Gln) as well as Asn-tRNA(Asn). Thus, the T. thermophilus tRNA-dependent AdT is a dual-specific Asp/Glu-AdT resembling other bacterial AdTs. In addition, we observed that removal of the 44 carboxy-terminal amino acids of the GatA subunit only inhibits the Asp-AdT activity, leaving the Glu-AdT activity of the mutant AdT unaltered; this shows that Asp-AdT and Glu-AdT activities can be mechanistically separated.


Assuntos
Transferases de Grupos Nitrogenados/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Genes Bacterianos , Dados de Sequência Molecular , Transferases de Grupos Nitrogenados/química , Transferases de Grupos Nitrogenados/genética , Estrutura Quaternária de Proteína , RNA Bacteriano/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Especificidade por Substrato , Thermus thermophilus/genética
7.
Mol Biol Cell ; 9(2): 355-73, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9450961

RESUMO

Integral membrane proteins are predicted to play key roles in the biogenesis and function of nuclear pore complexes (NPCs). Revealing how the transport apparatus is assembled will be critical for understanding the mechanism of nucleocytoplasmic transport. We observed that expression of the carboxyl-terminal 200 amino acids of the nucleoporin Nup116p had no effect on wild-type yeast cells, but it rendered the nup116 null strain inviable at all temperatures and coincidentally resulted in the formation of nuclear membrane herniations at 23 degrees C. To identify factors related to NPC function, a genetic screen for high-copy suppressors of this lethal nup116-C phenotype was conducted. One gene (designated SNL1 for suppressor of nup116-C lethal) was identified whose expression was necessary and sufficient for rescuing growth. Snl1p has a predicted molecular mass of 18.3 kDa, a putative transmembrane domain, and limited sequence similarity to Pom152p, the only previously identified yeast NPC-associated integral membrane protein. By both indirect immunofluorescence microscopy and subcellular fractionation studies, Snl1p was localized to both the nuclear envelope and the endoplasmic reticulum. Membrane extraction and topology assays suggested that Snl1p was an integral membrane protein, with its carboxyl-terminal region exposed to the cytosol. With regard to genetic specificity, the nup116-C lethality was also suppressed by high-copy GLE2 and NIC96. Moreover, high-copy SNL1 suppressed the temperature sensitivity of gle2-1 and nic96-G3 mutant cells. The nic96-G3 allele was identified in a synthetic lethal genetic screen with a null allele of the closely related nucleoporin nup100. Gle2p physically associated with Nup116p in vitro, and the interaction required the N-terminal region of Nup116p. Therefore, genetic links between the role of Snl1p and at least three NPC-associated proteins were established. We suggest that Snl1p plays a stabilizing role in NPC structure and function.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/citologia , Sequência de Aminoácidos , Clonagem Molecular , Retículo Endoplasmático/química , Proteínas Fúngicas/metabolismo , Genes Fúngicos/genética , Genes Letais/genética , Genes Supressores/genética , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Chaperonas Moleculares , Dados de Sequência Molecular , Membrana Nuclear/química , Membrana Nuclear/ultraestrutura , Poro Nuclear , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Fenótipo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...