Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858928

RESUMO

In this paper, we present a navigation strategy exclusively designed for social robots with limited sensors for applications in homes. The overall system integrates a reactive design based on subsumption architecture and a knowledge system with learning capabilities. The component of the system includes several modules, such as doorway detection and room localization via convolutional neural network (CNN), avoiding obstacles via reinforcement learning, passing the doorway via Canny edge's detection, building an abstract map called a Directional Semantic Topological Map (DST-Map) within the knowledge system, and other predefined layers within the subsumption architecture. The individual modules and the overall system are evaluated in a virtual environment using Webots simulator.

2.
Sensors (Basel) ; 20(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349349

RESUMO

In this paper, we propose a novel algorithm to detect a door and its orientation in indoor settings from the view of a social robot equipped with only a monocular camera. The challenge is to achieve this goal with only a 2D image from a monocular camera. The proposed system is designed through the integration of several modules, each of which serves a special purpose. The detection of the door is addressed by training a convolutional neural network (CNN) model on a new dataset for Social Robot Indoor Navigation (SRIN). The direction of the door (from the robot's observation) is achieved by three other modules: Depth module, Pixel-Selection module, and Pixel2Angle module, respectively. We include simulation results and real-time experiments to demonstrate the performance of the algorithm. The outcome of this study could be beneficial in any robotic navigation system for indoor environments.

3.
Sensors (Basel) ; 19(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454925

RESUMO

The important problem of Simultaneous Localization and Mapping (SLAM) in dynamic environments is less studied than the counterpart problem in static settings. In this paper, we present a solution for the feature-based SLAM problem in dynamic environments. We propose an algorithm that integrates SLAM with multi-target tracking (SLAMMTT) using a robust feature-tracking algorithm for dynamic environments. A novel implementation of RANdomSAmple Consensus (RANSAC) method referred to as multilevel-RANSAC (ML-RANSAC) within the Extended Kalman Filter (EKF) framework is applied for multi-target tracking (MTT). We also apply machine learning to detect features from the input data and to distinguish moving from stationary objects. The data stream from LIDAR and vision sensors are fused in real-time to detect objects and depth information. A practical experiment is designed to verify the performance of the algorithm in a dynamic environment. The unique feature of this algorithm is its ability to maintain tracking of features even when the observations are intermittent whereby many reported algorithms fail in such situations. Experimental validation indicates that the algorithm is able to perform consistent estimates in a fast and robust manner suggesting its feasibility for real-time applications.

4.
Sensors (Basel) ; 12(1): 429-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22368478

RESUMO

This paper presents a sensor fusion strategy applied for Simultaneous Localization and Mapping (SLAM) in dynamic environments. The designed approach consists of two features: (i) the first one is a fusion module which synthesizes line segments obtained from laser rangefinder and line features extracted from monocular camera. This policy eliminates any pseudo segments that appear from any momentary pause of dynamic objects in laser data. (ii) The second characteristic is a modified multi-sensor point estimation fusion SLAM (MPEF-SLAM) that incorporates two individual Extended Kalman Filter (EKF) based SLAM algorithms: monocular and laser SLAM. The error of the localization in fused SLAM is reduced compared with those of individual SLAM. Additionally, a new data association technique based on the homography transformation matrix is developed for monocular SLAM. This data association method relaxes the pleonastic computation. The experimental results validate the performance of the proposed sensor fusion and data association method.


Assuntos
Algoritmos , Lasers , Movimento (Física) , Fotografação/instrumentação , Robótica/instrumentação , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...