Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Xenotransplantation ; 30(5): e12820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37735958

RESUMO

Xenotransplantation is a promising approach to reduce organ shortage, while genetic modification of donor pigs has significantly decreased the immunogenic burden of xenotransplants, organ rejection is still a hurdle. Genetically modified pig organs are used in xenotransplantation research, and the first clinical pig-to-human heart transplantation was performed in 2022. However, the impact of genetic modification has not been investigated on a cellular level yet. Endothelial cells (EC) and their sugar-rich surface known as the glycocalyx are the first barrier encountering the recipient's immune system, making them a target for rejection. We have previously shown that wild type venous but not arterial EC were protected against heparan sulfate (HS) shedding after activation with human serum or human tumor necrosis factor alpha (TNF𝛼). Using a 2D microfluidic system we investigated the glycocalyx dynamics of genetically modified porcine arterial and venous EC (Gal𝛼1,3 Gal knock-out, transgenic for human CD46 and thrombomodulin, GTKO/hCD46/hTM) after activation with human serum or human TNF𝛼. Interestingly, we observed that GTKO/hCD46/hTM arterial cells, additionally to venous cells, do not shed HS. Unscathed HS on GTKO/hCD46/hTM EC correlated with reduced complement deposition, suggesting that protection against complement activation contributes to maintaining an intact glycocalyx layer on arterial EC. This protection was lost on GTKO/hCD46/hTM cells after simultaneous perfusion with human serum and human TNF𝛼. HS shedding on arterial cells and increased complement deposition on both arterial and venous cells was observed. These findings suggest that GTKO/hCD46/hTM EC revert to a proinflammatory phenotype in an inflammatory xenotransplantation setting, potentially favoring transplant rejection.


Assuntos
Células Endoteliais , Glicocálix , Animais , Humanos , Suínos , Transplante Heterólogo , Animais Geneticamente Modificados , Proteínas do Sistema Complemento
2.
Transplantation ; 107(12): e328-e338, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643028

RESUMO

BACKGROUND: Orthotopic cardiac xenotransplantation has seen substantial advancement in the last years and the initiation of a clinical pilot study is close. However, donor organ overgrowth has been a major hurdle for preclinical experiments, resulting in loss of function and the decease of the recipient. A better understanding of the pathogenesis of organ overgrowth after xenotransplantation is necessary before clinical application. METHODS: Hearts from genetically modified ( GGTA1-KO , hCD46/hTBM transgenic) juvenile pigs were orthotopically transplanted into male baboons. Group I (control, n = 3) received immunosuppression based on costimulation blockade, group II (growth inhibition, n = 9) was additionally treated with mechanistic target of rapamycin inhibitor, antihypertensive medication, and fast corticoid tapering. Thyroid hormones and insulin-like growth factor 1 were measured before transplantation and before euthanasia, left ventricular (LV) growth was assessed by echocardiography, and hemodynamic data were recorded via a wireless implant. RESULTS: Insulin-like growth factor 1 was higher in baboons than in donor piglets but dropped to porcine levels at the end of the experiments in group I. LV mass increase was 10-fold faster in group I than in group II. This increase was caused by nonphysiological LV wall enlargement. Additionally, pressure gradients between LV and the ascending aorta developed, and signs of dynamic left ventricular outflow tract (LVOT) obstruction appeared. CONCLUSIONS: After orthotopic xenotransplantation in baboon recipients, untreated porcine hearts showed rapidly progressing concentric hypertrophy with dynamic LVOT obstruction, mimicking hypertrophic obstructive cardiomyopathy in humans. Antihypertensive and antiproliferative drugs reduced growth rate and inhibited LVOT obstruction, thereby preventing loss of function.


Assuntos
Transplante de Coração , Obstrução da Via de Saída Ventricular Esquerda , Humanos , Animais , Masculino , Suínos , Xenoenxertos , Transplante Heterólogo/métodos , Papio , Fator de Crescimento Insulin-Like I , Anti-Hipertensivos , Projetos Piloto , Hipertrofia Ventricular Esquerda , Transplante de Coração/efeitos adversos , Transplante de Coração/métodos
3.
Viruses ; 15(7)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37515304

RESUMO

Xenotransplantation, like allotransplantation, is usually associated with microchimerism, i.e., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans, as well as in most preclinical trials in nonhuman primates (for review, see Denner, Viruses 2023, 15, 190). When using pigs as xenotransplantation donors, their cells contain porcine endogenous retroviruses (PERVs) in their genome. This makes it difficult to discriminate between microchimerism and PERV infection of the recipient. Here, we demonstrate the appropriate virological methods to be used for the identification of microchimerism, first by screening for porcine cellular genes, and then how to detect infection of the host. Using porcine short interspersed nuclear sequences (SINEs), which have hundreds of thousands of copies in the pig genome, significantly increased the sensitivity of the screening for pig cells. Second, absence of PERV RNA demonstrated an absence of viral genomic RNA or expression as mRNA. Lastly, absence of antibodies against PERV proteins conclusively demonstrated an absence of a PERV infection. When applying these methods for analyzing baboons after pig heart transplantation, microchimerism could be demonstrated and infection excluded in all animals. These methods can be used in future clinical trials.


Assuntos
Quimerismo , Retrovirus Endógenos , Humanos , Suínos , Animais , Papio , Retrovirus Endógenos/genética , Transplante Heterólogo , RNA
4.
Xenotransplantation ; 29(3): e12749, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35616211

RESUMO

INTRODUCTION: After orthotopic cardiac xenotransplantation, the combination of both the inflammatory responses to the exposure of a recipient to the xenogeneic organ and the use of cardiopulmonary bypass has been assumed to cause detrimental side effects. These have been described not only to affect the transplanted organ (heart) itself, but also the recipient's lungs. In this article, we summarize how these possible detrimental processes can be minimized or even avoided. METHODS: Data from eight pig-to-baboon orthotopic cardiac xenotransplantation experiments were analyzed with a special focus on early (within the first week) postoperative organ dysfunction and systemic inflammatory responses. Non-ischemic heart preservation and the careful management of the heart-lung machine were deemed essential to guarantee not only the immediate function of the transplanted xenogeneic organ but also the prompt recovery of the recipient. RESULTS: After weaning from cardiopulmonary bypass, very low catecholamine amounts were needed to ensure an adequate pump function and cardiac output. Central venous oxygen saturation and serum lactate levels remained within normal ranges. All animals were successfully weaned from ventilation within the first postoperative hours. Serum parameters of the transplants and native kidneys and livers were initially slightly elevated or always normal, as were hemoglobin, LDH, and platelet measurements. Markers of systemic inflammation, C-reactive protein, and IL-6 were slightly elevated, but the reactions caused no lasting damage. CONCLUSION: Consistent short-term and long-term results were achieved after orthotopic cardiac pig-to-baboon transplantation without detrimental inflammatory responses or signs of multiorgan failure. In comparison to allogeneic procedures, non-ischemic heart preservation was important for successful immediate organ function, as was the management of the heart-lung machine. Thus, we believe that genetically modified porcine hearts are ready for use in the clinical setting.


Assuntos
Transplante de Coração , Transplantes , Animais , Transplante de Coração/métodos , Máquina Coração-Pulmão , Inflamação , Papio , Suínos , Transplante Heterólogo/métodos
6.
Xenotransplantation ; 28(1): e12636, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841431

RESUMO

BACKGROUND: Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. METHODS: Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient's kidney, liver and coagulation functions. RESULTS: In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. CONCLUSIONS: While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation.


Assuntos
Transplante de Coração , Animais , Xenoenxertos , Papio , Perfusão , Suínos , Transplante Heterólogo
7.
Sci Rep ; 10(1): 17531, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067513

RESUMO

Xenotransplantation using pig organs has achieved survival times up to 195 days in pig orthotopic heart transplantation into baboons. Here we demonstrate that in addition to an improved immunosuppressive regimen, non-ischaemic preservation with continuous perfusion and control of post-transplantation growth of the transplant, prevention of transmission of the porcine cytomegalovirus (PCMV) plays an important role in achieving long survival times. For the first time we demonstrate that PCMV transmission in orthotopic pig heart xenotransplantation was associated with a reduced survival time of the transplant and increased levels of IL-6 and TNFα were found in the transplanted baboon. Furthermore, high levels of tPA-PAI-1 complexes were found, suggesting a complete loss of the pro-fibrinolytic properties of the endothelial cells. These data show that PCMV has an important impact on transplant survival and call for elimination of PCMV from donor pigs.


Assuntos
Infecções por Citomegalovirus/fisiopatologia , Sobrevivência de Enxerto , Transplante de Coração/efeitos adversos , Animais , Animais Geneticamente Modificados , Citomegalovirus/classificação , Infecções por Citomegalovirus/transmissão , Células Endoteliais , Xenoenxertos , Sistema Imunitário , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Interleucina-6/metabolismo , Papio , Suínos , Transplante Heterólogo , Fator de Necrose Tumoral alfa/metabolismo
8.
J Heart Lung Transplant ; 39(8): 751-757, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32527674

RESUMO

BACKGROUND: The demand for donated human hearts far exceeds the number available. Xenotransplantation of genetically modified porcine organs provides an alternative. In 2000, an Advisory Board of the International Society for Heart and Lung Transplantation set the benchmark for commencing clinical cardiac xenotransplantation as consistent 60% survival of non-human primates after life-supporting porcine heart transplantations. Recently, we reported the stepwise optimization of pig-to-baboon orthotopic cardiac xenotransplantation finally resulting in consistent success, with 4 recipients surviving 90 (n = 2), 182, and 195 days. Here, we report on 4 additional recipients, supporting the efficacy of our procedure. RESULTS: The first 2 additional recipients succumbed to porcine cytomegalovirus (PCMV) infections on Days 15 and 27, respectively. In 2 further experiments, PCMV infections were successfully avoided, and 3-months survival was achieved. Throughout all the long-term experiments, heart, liver, and renal functions remained within normal ranges. Post-mortem cardiac diameters were slightly increased when compared with that at the time of transplantation but with no detrimental effect. There were no signs of thrombotic microangiopathy. The current regimen enabled the prolonged survival and function of orthotopic cardiac xenografts in altogether 6 of 8 baboons, of which 4 were now added. These results exceed the threshold set by the Advisory Board of the International Society for Heart and Lung Transplantation. CONCLUSIONS: The results of our current and previous experimental cardiac xenotransplantations together fulfill for the first time the pre-clinical efficacy suggestions. PCMV-positive donor animals must be avoided.


Assuntos
Rejeição de Enxerto/etiologia , Transplante de Coração/métodos , Doadores de Tecidos , Animais , Sobrevivência de Enxerto , Humanos , Suínos , Transplante Heterólogo
9.
Xenotransplantation ; 27(5): e12576, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31854004

RESUMO

BACKGROUND: Transpulmonary thermodilution is well established as a tool for in-depth hemodynamic monitoring of critically ill patients during surgical procedures and intensive care. It permits easy assessment of graft function following cardiac transplantation and guides post-operative volume and catecholamine therapy. Since no pulmonary catheter is needed, transpulmonary thermodilution could be useful in experimental cardiac pig-to-baboon xenotransplantation. However, normal values for healthy animals have not yet been reported. Here, we present data from piglets and baboons before xenotransplantation experiments and highlight differences between the two species and human reference values. METHODS: Transpulmonary thermodilution from baboons (body weight 10-34 kg) and piglets (body weight 10-38kg) were analyzed. Measurements were taken in steady state after induction of general anesthesia before surgical procedures commenced. Cardiac index (CI), mean arterial pressure (MAP), systemic vascular resistance index (SVRI), parameters quantifying cardiac filling (global end-diastolic volume index, GEDI), and pulmonary edema (extravascular lung water, ELWI) were assessed. RESULTS: Preload, afterload, and contractility parameters clearly correlated with total body weight or body surface area. Baboons had lower CI values than weight-matched piglets (4.2 ± 0.9l/min/m2 vs 5.3 ± 1.0/min/m2 , P < .01). MAP and SVRI were higher in baboons than piglets (MAP: 99 ± 22 mm Hg vs 62 ± 11 mm Hg, P < .01; SVRI: 1823 ± 581 dyn*s/cm5 *m2 vs 827 ± 204 dyn*s/cm5 *m2 , P < .01). GEDI and ELWI did differ significantly between both species, but measurements were within similar ranges (GEDI: 523 ± 103 mL/m2 vs 433 ± 78 mL/m2 , P < .01; ELWI: 10 ± 3 mL/kg vs 11 ± 2 mL/kg, P < .01). Regarding adult human reference values, CI was similar to both baboons and piglets, but all other parameters were different. CONCLUSIONS: Parameters of preload, afterload, and contractility differ between baboons and piglets. In particular, baboons have a much higher afterload than piglets, which might be instrumental in causing perioperative xenograft dysfunction and post-operative myocardial hypertrophy after orthotopic pig-to-baboon cardiac xenotransplantation. Most transpulmonary thermodilution-derived parameters obtained from healthy piglets and baboons lie outside the reference ranges for humans, so human normal values should not be used to guide treatment in those animals. Our data provide reference values as a basis for developing algorithms for perioperative hemodynamic management in pig-to-baboon cardiac xenotransplantation.


Assuntos
Anestesia , Monitorização Hemodinâmica , Termodiluição , Animais , Hemodinâmica , Xenoenxertos , Humanos , Papio , Valores de Referência , Suínos , Transplante Heterólogo
11.
Nature ; 564(7736): 430-433, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518863

RESUMO

Heart transplantation is the only cure for patients with terminal cardiac failure, but the supply of allogeneic donor organs falls far short of the clinical need1-3. Xenotransplantation of genetically modified pig hearts has been discussed as a potential alternative4. Genetically multi-modified pig hearts that lack galactose-α1,3-galactose epitopes (α1,3-galactosyltransferase knockout) and express a human membrane cofactor protein (CD46) and human thrombomodulin have survived for up to 945 days after heterotopic abdominal transplantation in baboons5. This model demonstrated long-term acceptance of discordant xenografts with safe immunosuppression but did not predict their life-supporting function. Despite 25 years of extensive research, the maximum survival of a baboon after heart replacement with a porcine xenograft was only 57 days and this was achieved, to our knowledge, only once6. Here we show that α1,3-galactosyltransferase-knockout pig hearts that express human CD46 and thrombomodulin require non-ischaemic preservation with continuous perfusion and control of post-transplantation growth to ensure long-term orthotopic function of the xenograft in baboons, the most stringent preclinical xenotransplantation model. Consistent life-supporting function of xenografted hearts for up to 195 days is a milestone on the way to clinical cardiac xenotransplantation7.


Assuntos
Transplante de Coração , Xenoenxertos/transplante , Papio , Suínos , Transplante Heterólogo , Animais , Anticorpos/análise , Anticorpos/sangue , Proteínas do Sistema Complemento/análise , Enzimas/sangue , Fibrina/análise , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Xenoenxertos/patologia , Humanos , Fígado/enzimologia , Masculino , Proteína Cofatora de Membrana/genética , Proteína Cofatora de Membrana/metabolismo , Miocárdio/enzimologia , Necrose , Perfusão , Contagem de Plaquetas , Tempo de Protrombina , Trombomodulina/genética , Trombomodulina/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...