Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20606, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996442

RESUMO

The care-kill response determines whether a sick individual will be treated or eliminated from an insect society, but little is known about the physiological underpinnings of this process. We exploited the stepwise infection dynamics of an entomopathogenic fungus in a termite to explore how care-kill transitions occur, and identify the chemical cues behind these shifts. We found collective responses towards pathogen-injected individuals to vary according to severity and timing of pathogen challenge, with elimination, via cannibalism, occurring sooner in response to a severe active infection. However, injection with inactivated fungal blastospores also resulted in increased albeit delayed cannibalism, even though it did not universally cause host death. This indicates that the decision to eliminate an individual is triggered before pathogen viability or terminal disease status has been established. We then compared the surface chemistry of differently challenged individuals, finding increased amounts of long-chained methyl-branched alkanes with similar branching patterns in individuals injected with both dead and viable fungal blastospores, with the latter showing the largest increase. This coincided with the highest amounts of observed cannibalism as well as signs of severe moribundity. Our study provides new mechanistic insight into the emergent collective behaviors involved in the disease defense of a termite society.


Assuntos
Isópteros , Humanos , Animais , Isópteros/fisiologia , Canibalismo
2.
Parasitol Res ; 122(7): 1573-1579, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37140652

RESUMO

An ant-pathogenic neogregarine in Temnothorax affinis and T. parvulus (Hymenoptera: Formicidae) is described based on morphological and ultrastructural characteristics. The pathogen infects the hypodermis of the ants. The infection was mainly synchronous so that only gametocysts and oocysts could be observed simultaneously in the host body. Gametogamy resulted in the formation of two oocysts within a gametocyst. The lemon-shaped oocysts measured 11-13 µm in length and 8-10 µm in width. The surface of the oocysts is not smooth but contains many buds. A ring-shaped line containing rosary-arrayed buds line up in the equatorial plane of the oocyst. These specific characteristics were observed for the first time in neogregarine oocysts from ants. Polar plugs were recognizable clearly by light and electron microscopy. The oocyst wall was quite thick, measuring 775 to 1000 nm. Each oocyst contained eight sporozoites. The neogregarines in the two Temnothorax species show many similarities such as the size and shape of the oocysts, a relatively fragile gametocyst membrane, host affinity, and tissue preference. We identified these neogregarines as Mattesia cf. geminata, which is here recorded from natural ant populations in the Old World for the first time. All neogregarine pathogens infecting ants in nature so far have been recorded from the New World. We present the two ant species, Temnothorax affinis and T. parvulus, as new natural hosts for M. cf. geminata. Furthermore, the morphological and ultrastructural characteristics of the oocyst of M. cf. geminata are documented by scanning and transmission electron microscopy for the first time.


Assuntos
Formigas , Apicomplexa , Animais , Apicomplexa/ultraestrutura , Oocistos/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica
3.
J Eukaryot Microbiol ; 70(3): e12967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760170

RESUMO

Spirotrichonymphea, one of the six classes of phylum Parabasalia, are characterized by bearing many flagella in spiral rows, and they occur exclusively in the guts of termites. Phylogenetic relationships among the 13 described genera are not well understood due to complex morphological evolution and a paucity of molecular data. One such understudied genus is Spironympha. It has been variously considered a valid genus, a subgenus of Spirotrichonympha, or an "immature" life cycle stage of Spirotrichonympha. To clarify this, we sequenced the small subunit rRNA gene sequences of Spironympha and Spirotrichonympha cells isolated from the hindguts of Reticulitermes species and Hodotermopsis sjostedti and confirmed the molecular identity of H. sjostedti symbionts using fluorescence in situ hybridization. Spironympha as currently circumscribed is polyphyletic, with both H. sjostedti symbiont species branching separately from the "true" Spironympha from Reticulitermes. Similarly, the Spirotrichonympha symbiont of H. sjostedti branches separately from the "true" Spirotrichonympha found in Reticulitermes. Our data support Spironympha from Reticulitermes as a valid genus most closely related to Spirotrichonympha, though its monophyly and interspecific relationships are not resolved in our molecular phylogenetic analysis. We propose three new genera to accommodate the H. sjostedti symbionts and two new species of Spirotrichonympha from Reticulitermes.


Assuntos
Isópteros , Parabasalídeos , Animais , Parabasalídeos/genética , Filogenia , Hibridização in Situ Fluorescente , Simbiose , Sistema Digestório
4.
Arthropod Struct Dev ; 73: 101238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796136

RESUMO

The soil-feeding habit is an evolutionary novelty found in some advanced groups of termites. The study of such groups is important to revealing interesting adaptations to this way-of-life. The genus Verrucositermes is one such example, characterized by peculiar outgrowths on the head capsule, antennae and maxillary palps, which are not found in any other termite. These structures have been hypothesized to be linked to the presence of a new exocrine organ, the rostral gland, whose structure has remained unexplored. We have thus studied the ultrastructure of the epidermal layer of the head capsule of Verrucositermes tuberosus soldiers. We describe the ultrastructure of the rostral gland, which consists of class 3 secretory cells only. The dominant secretory organelles comprise rough endoplasmic reticulum and Golgi apparatus, which provide secretions delivered to the surface of the head, likely made of peptide-derived components of unclear function. We discuss a possible role of the rostral gland of soldiers as an adaptation to the frequent encounter with soil pathogens during search for new food resources.


Assuntos
Baratas , Isópteros , Animais , Isópteros/ultraestrutura , Evolução Biológica , Epiderme
5.
MycoKeys ; 100: 245-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162290

RESUMO

Nephridiophagids are unicellular fungi (Chytridiomycota) that infect the Malpighian tubules of insects. Most species have been found in cockroach hosts and belong to the genus Nephridiophaga. Three additional genera have been described from beetles and an earwig. Here, we characterise morphologically and molecular phylogenetically the nephridiophagids of the European earwig Forficulaauricularia and the mallow beetle Podagricamalvae. Their morphology and life cycle stages resemble those of other nephridiophagids, but their rRNA gene sequences support the existence of two additional genera. Whereas the earwig nephridiophagid (Nephridiochytriumforficulaegen. nov. et sp. nov.) forms a sister lineage of the Nephridiophaga cluster, the mallow beetle nephridiophagid (Malpighivincopodagricaegen. nov. et sp. nov.) represents the earliest divergent lineage within the nephridiophagids, being sister to all other species. Our results corroborate the hypothesis that different insect groups harbour distinct nephridiophagid lineages.

6.
Eur J Protistol ; 86: 125913, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36084431

RESUMO

Gastrophysa viridula DeGeer 1775, the green dock leaf beetle, belongs to a group of beneficial insects, which can be used as a classical biological control agent against sorrels (Rumex sp., Polygonaceae). Therefore, any infection by pathogenic organisms in this beetle is undesirable. In the present study, a new microsporidian pathogen isolated from G. viridula was identified based on morphological and ultrastructural characteristics, supported with a molecular phylogenetic analysis. Light and transmission electron microscopy studies indicated that the microsporidium was polymorphic throughout its life cycle. Sporulation stages were not all in direct contact with the host-cell cytoplasm. The fresh single diplokaryotic spores of the secondary sporulation cycle had a long narrow morphology, measuring about 5 × 2.1 µm (n = 50). Octospores produced in the secondary sporulation cycle were also observed. Morphological and ultrastructural characteristics of the life cycle stages place it within the genus Vairimorpha. The phylogenetic tree constructed on the 16S rRNA gene sequence analysis supports the morphological and ultrastructural characteristics and indicates that the pathogen is closely related to the Vairimorpha clade of microsporidia. The pathogen is named Vairimorpha gastrophysae sp. nov.


Assuntos
Besouros , Microsporídios , Animais , Filogenia , RNA Ribossômico 16S , Estágios do Ciclo de Vida
7.
Appl Environ Microbiol ; 88(14): e0050322, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862663

RESUMO

Most members of the family Treponemataceae (Spirochaetales) are associated with vertebrate hosts. However, a diverse clade of uncultured, putatively free-living treponemes comprising several genus-level lineages is present in other anoxic environments. The only cultivated representative to date is Treponema zuelzerae, isolated from freshwater mud. Here, we describe the isolation of strain RmG11 from the intestinal tract of cockroaches. The strain represents a novel genus-level lineage of Treponemataceae and is metabolically distinct from T. zuelzerae. While T. zuelzerae grows well on various sugars, forming acetate and H2 as major fermentation products, strain RmG11 grew poorly on glucose, maltose, and starch, forming mainly ethanol and only small amounts of acetate and H2. In contrast to the growth of T. zuelzerae, that of strain RmG11 was strongly inhibited at high H2 partial pressures but improved considerably when H2 was removed from the headspace. Cocultures of strain RmG11 with the H2-consuming Methanospirillum hungatei produced acetate and methane but no ethanol. Comparative genomic analysis revealed that strain RmG11 possesses only a single, electron-confurcating hydrogenase that forms H2 from NADH and reduced ferredoxin, whereas T. zuelzerae also possesses a second, ferredoxin-dependent hydrogenase that allows the thermodynamically more favorable formation of H2 from ferredoxin via the Rnf complex. In addition, we found that T. zuelzerae utilizes xylan and possesses the genomic potential to degrade other plant polysaccharides. Based on phenotypic and phylogenomic evidence, we describe strain RmG11 as Brucepastera parasyntrophica gen. nov., sp. nov. and Treponema zuelzerae as Teretinema zuelzerae gen. nov., comb. nov. IMPORTANCE Spirochetes are widely distributed in various anoxic environments and commonly form molecular hydrogen as a major fermentation product. Here, we show that two closely related members of the family Treponemataceae differ strongly in their sensitivity to high hydrogen partial pressure, and we explain the metabolic mechanisms that cause these differences by comparative genome analysis. We demonstrate a strong boost in the growth of the hydrogen-sensitive strain and a shift in its fermentation products to acetate during cocultivation with a H2-utilizing methanogen. Our results add a hitherto unrecognized facet to the fermentative metabolism of spirochetes and also underscore the importance of interspecies hydrogen transfer in not-obligately-syntrophic interactions among fermentative and hydrogenotrophic guilds in anoxic environments.


Assuntos
Hidrogênio , Hidrogenase , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Metabolismo Energético , Ácidos Graxos/análise , Ferredoxinas/metabolismo , Hidrogênio/metabolismo , Hidrogenase/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Spirochaetales/genética , Spirochaetales/metabolismo , Treponema
8.
J Invertebr Pathol ; 192: 107769, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597279

RESUMO

Nephridiophagids are unicellular fungi (Chytridiomycota), which infect the Malpighian tubules of insects. While most life cycle features are known, the effects of these endobionts on their hosts remain poorly understood. Here, we present results on the influence of an infection of the cockroach Blattella germanica with Nephridiophaga blattellae (Ni = Nephridiophaga-infected) on physical, physiological, and reproductive fitness parameters. Since the gut nematode Blatticola blattae is a further common parasite of B. germanica, we included double infected cockroaches (N + Ni = nematode plus Ni) in selected experiments. Ni individuals had lower fat reserves and showed reduced mobility. The lifespan of adult hosts was only slightly affected in these individuals but significantly shortened when both Nephridiophaga and nematodes were present. Ni as well as N + Ni females produced considerably less offspring than parasite-free (P-free) females. Immune parameters such as the number of hemocytes and phenoloxidase activity were barely changed by Nephridiophaga and/or nematode infections, while the ability to detoxify pesticides decreased. Quantitative proteomics from hemolymph of P-free, Ni, and N + Ni populations revealed clear differences in the expression profiles. For Ni animals, for example, the down-regulation of fatty acid synthases corroborates our finding of reduced fat reserves. Our study clearly shows that an infection with Nephridiophaga (and nematodes) leads to an overall reduced host fitness.


Assuntos
Blattellidae , Quitridiomicetos , Animais , Feminino , Hemolinfa , Insetos , Estágios do Ciclo de Vida
9.
Fungal Divers ; 109(1): 59-98, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34608378

RESUMO

The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.

10.
Environ Microbiol ; 23(8): 4228-4245, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33998119

RESUMO

Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of 'termite gut treponemes' from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse 'termite cluster I', a deep-branching sister group of Treponemataceae (fam. 'Termitinemataceae') that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.


Assuntos
Baratas , Isópteros , Animais , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Spirochaetales , Treponema/genética
11.
Acta Parasitol ; 66(3): 925-931, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33713276

RESUMO

PURPOSE: The aim of this study was to investigate and document the characteristic electron microscopic features of the oocyst of Adelina melolonthae, a coccidian pathogen of the European cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). METHODS: Larvae of M. melolontha were collected at Ordu, Turkey. Each larva was dissected in insect Ringer solution. Adeleid oocysts from the tissue that is suspected to Contain coccidian infections were examined under a light microscope (Zeiss), a scanning electron microscope (FEI Quanta 200) and transmission electron Microscope (Philips EM 208). RESULTS: Spherical to ellipsoidal oocysts measure ca. 24-44.5 µm (mean 35.6 µm) in diameter (n = 50) and include up to twelve sporocysts. The oocyst wall has double layers; the outer layer measured 400-500 nm in thickness and the inner one 10-25 nm. Sporocysts including two sporozoites are rounded ca. 11-12.5 µm (mean 11.7 µm) in diameter. The sporocyst wall consisted of only one 70-80-nm-thick layer. The sporozoites are ellipsoidal and measured 9-11 µm length and 3-4 µm in width. Sporocysts include residual bodies. CONCLUSION: In the present paper, the morphology and ultrastructure of the oocyst of A. melolonthae is documented for the first time and compared with other Adelina and coccidian species infecting insects. The results in this study confirm his identification and justify the classification as a separate species A. melolonthae, which differs from other Adelina species.


Assuntos
Besouros , Eucoccidiida , Animais , Elétrons , Oocistos , Turquia
12.
Eur J Protistol ; 79: 125764, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33706205
13.
Sci Rep ; 11(1): 396, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431987

RESUMO

Nephridiophagids are unicellular eukaryotes that parasitize the Malpighian tubules of numerous insects. Their life cycle comprises multinucleate vegetative plasmodia that divide into oligonucleate and uninucleate cells, and sporogonial plasmodia that form uninucleate spores. Nephridiophagids are poor in morphological characteristics, and although they have been tentatively identified as early-branching fungi based on the SSU rRNA gene sequences of three species, their exact position within the fungal tree of live remained unclear. In this study, we describe two new species of nephridiophagids (Nephridiophaga postici and Nephridiophaga javanicae) from cockroaches. Using long-read sequencing of the nearly complete rDNA operon of numerous further species obtained from cockroaches and earwigs to improve the resolution of the phylogenetic analysis, we found a robust affiliation of nephridiophagids with the Chytridiomycota-a group of zoosporic fungi that comprises parasites of diverse host taxa, such as microphytes, plants, and amphibians. The presence of the same nephridiophagid species in two only distantly related cockroaches indicates that their host specificity is not as strict as generally assumed.


Assuntos
Baratas/microbiologia , DNA Ribossômico/genética , Fungos/fisiologia , Genes Fúngicos , Animais , Quitridiomicetos/classificação , Quitridiomicetos/genética , Quitridiomicetos/fisiologia , Baratas/classificação , DNA Fúngico/genética , DNA Ribossômico/análise , Fungos/classificação , Fungos/genética , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos/genética
14.
Protist ; 170(6): 125683, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31765971

RESUMO

The symbiotic gut flagellates of lower termites form host-specific consortia composed of Parabasalia and Oxymonadida. The analysis of their coevolution with termites is hampered by a lack of information, particularly on the flagellates colonizing the basal host lineages. To date, there are no reports on the presence of oxymonads in termites of the family Stolotermitidae. We discovered three novel, deep-branching lineages of oxymonads in a member of this family, the damp-wood termite Porotermes adamsoni. One tiny species (6-10µm), Termitimonas travisi, morphologically resembles members of the genus Monocercomonoides, but its SSU rRNA genes are highly dissimilar to recently published sequences of Polymastigidae from cockroaches and vertebrates. A second small species (9-13µm), Oxynympha loricata, has a slight phylogenetic affinity to members of the Saccinobaculidae, which are found exclusively in wood-feeding cockroaches of the genus Cryptocercus, the closest relatives of termites, but shows a combination of morphological features that is unprecedented in any oxymonad family. The third, very rare species is larger and possesses a contractile axostyle; it represents a phylogenetic sister group to the Oxymonadidae. These findings significantly advance our understanding of the diversity of oxymonads in termite guts and the evolutionary history of symbiotic digestion.


Assuntos
Isópteros/parasitologia , Oximonadídeos/classificação , Oximonadídeos/fisiologia , Filogenia , Animais , Oximonadídeos/citologia , Oximonadídeos/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie
15.
Sci Rep ; 8(1): 14433, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258216

RESUMO

Social insects employ a range of behaviours to protect their colonies against disease, but little is known about how such collective behaviours are orchestrated. This is especially true for the social Blattodea (termites). We developed an experimental approach that allowed us to explore how the social response to disease is co-ordinated by multistep host-pathogen interactions. We infected the eastern subterranean termite Reticulitermes flavipes with the entomopathogenic fungus Metarhizium anisopliae, and then, at different stages of infection, reintroduced them to healthy nestmates and recorded behavioural responses. As expected, termites groomed pathogen-exposed individuals significantly more than controls; however, grooming was significantly elevated after fungal germination than before, demonstrating the importance of fungal status to hygienic behaviour. Significantly, we found that cannibalism became prevalent only after exposed termites became visibly ill, highlighting the importance of host condition as a cue for social hygienic behaviour. Our study reveals the presence of a coordinated social response to disease that depends on stage of infection. Specifically, we show how the host may play a key role in triggering its own sacrifice. Sacrificial self-flagging has been observed in other social insects: our results demonstrate that termites have independently evolved to both recognize and destructively respond to sickness.


Assuntos
Comportamento Animal , Isópteros/microbiologia , Metarhizium/fisiologia , Animais , Canibalismo , Asseio Animal , Interações Hospedeiro-Patógeno , Isópteros/fisiologia , Comportamento Social
16.
Protist ; 169(4): 584-602, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29960931

RESUMO

Calcineurin is involved in development and cell differentiation of the social amoeba Dictyostelium discoideum. However, since knockouts of the calcineurin-encoding genes are not possible in D. discoideum it is assumed that the phosphatase also plays a crucial role during vegetative growth of the amoebae. Therefore, we investigated the role of calcineurin during vegetative growth in D. discoideum. RNAi-silenced calcineurin mutants showed cellular alterations with an abnormal morphology of mitochondria and had increased content of mitochondrial DNA (mtDNA). In contrast, mitochondria showed no substantial functional impairment. Calcineurin-silencing led to altered expression of calcium-regulated genes as well as mitochondrially-encoded genes. Furthermore, genes related to oxidative stress were higher expressed in the mutants, which correlated to an increased resistance towards reactive oxygen species (ROS). Most of the changes observed during vegetative growth were not seen after starvation of the calcineurin mutants. We show that impairment of calcineurin led to many subtle, but in the sum crucial cellular alterations in vegetative D. discoideum cells. As these alterations were not observed after starvation we propose a dual role for calcineurin during growth and development. Our results imply that calcineurin is one player in the mutual interplay between mitochondria and ROS during vegetative growth.


Assuntos
Calcineurina/fisiologia , Dictyostelium/crescimento & desenvolvimento , Calcineurina/genética , Dictyostelium/genética , Expressão Gênica , Inativação Gênica , Mitocôndrias/fisiologia , Estresse Oxidativo , Estresse Fisiológico
17.
Sci Rep ; 8(1): 8504, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855603

RESUMO

Natural clays and synthetic nanofibres can have a severe impact on human health. After several decades of research, the molecular mechanism of how asbestos induces cancer is not well understood. Different fibres, including asbestos, can penetrate cell membranes and introduce foreign DNA in bacterial and eukaryotic cells. Incubating Escherichia coli under friction forces with sepiolite, a clayey material, or with asbestos, causes double-strand DNA breaks. Antibiotics and clays are used together in animal husbandry, the mutagenic effect of these fibres could be a pathway to antibiotic resistance due to the friction provided by peristalsis of the gut from farm animals in addition to horizontal gene transfer. Moreover, we raise the possibility that the same mechanism could generate bacteria diversity in natural scenarios, playing a role in the evolution of species. Finally, we provide a new model on how asbestos may promote mutagenesis and cancer based on the observed mechanical genotoxicity.


Assuntos
Amianto/efeitos adversos , Carcinogênese/induzido quimicamente , Quebras de DNA de Cadeia Dupla , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Silicatos de Magnésio/efeitos adversos , Criação de Animais Domésticos , Animais , Argila/química , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Transferência Genética Horizontal , Silicatos de Magnésio/química , Mutagênese/efeitos dos fármacos
18.
Syst Appl Microbiol ; 41(2): 101-112, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29295750

RESUMO

We isolated a novel member of the phylum Verrucomicrobia from the hindgut of the cockroach Shelfordella lateralis. Strain Ho45 is a yellow-pigmented, motile coccus that represents a new genus-level lineage with less than 93% sequence similarity to the 16S rRNA genes of other species in the family Opitutaceae. Ultrastructural analysis revealed a Gram-negative cell envelope with an outer membrane and a periplasmic space. In its ability to ferment sugars to propionate and acetate as major products, strain Ho45 resembles its closest relative, Opitutus terrae. However, the strains differed in their relationship to oxygen. Although strain Ho45 grew and consumed oxygen at sub-atmospheric concentrations (1-4%), both growth rate and cell yield decreased strongly with increasing oxygen concentration in the headspace. By contrast, O. terrae, previously described as an obligate anaerobe, proved to be facultatively aerobic, with highest growth rates and cell yields at 2% and 16% oxygen, respectively. Also the closely related Didymococcus (Diplosphaera) colitermitum, previously described as an obligately aerobic microaerophile, showed a fermentative metabolism under anoxic conditions, forming the same products from glucose as strain Ho45 and O. terrae. Based on phenotypic and phylogenetic evidence, we propose strain Ho45 as the type strain of a novel genus, Ereboglobus luteus gen. nov. sp. nov., and provide an emended description of the family Opitutaceae and the genera Opitutus and Didymococcus.


Assuntos
Bactérias Anaeróbias/classificação , Baratas/microbiologia , Trato Gastrointestinal/microbiologia , Oxigênio/metabolismo , Filogenia , Animais , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Pigmentação , Análise de Sequência de DNA
19.
J Eukaryot Microbiol ; 65(1): 77-92, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28682523

RESUMO

The guts of lower termites are inhabited by host-specific consortia of cellulose-digesting flagellate protists. In this first investigation of the symbionts of the family Serritermitidae, we found that Glossotermes oculatus and Serritermes serrifer each harbor similar parabasalid morphotypes: large Pseudotrichonympha-like cells, medium-sized Leptospironympha-like cells with spiraled bands of flagella, and small Hexamastix-like cells; oxymonadid flagellates were absent. Despite their morphological resemblance to Pseudotrichonympha and Leptospironympha, a SSU rRNA-based phylogenetic analysis identified the two larger, trichonymphid flagellates as deep-branching sister groups of Teranymphidae, with Leptospironympha sp. (the only spirotrichosomid with sequence data) in a moderately supported basal position. Only the Hexamastix-like flagellates are closely related to trichomonadid flagellates from Rhinotermitidae. The presence of two deep-branching lineages of trichonymphid flagellates in Serritermitidae and the absence of all taxa characteristic of the ancestral rhinotermitids underscores that the flagellate assemblages in the hindguts of lower termites were shaped not only by a progressive loss of flagellates during vertical inheritance but also by occasional transfaunation events, where flagellates were transferred horizontally between members of different termite families. In addition to the molecular phylogenetic analyses, we present a detailed morphological characterization of the new spirotrichosomid genus Heliconympha using light and electron microscopy.


Assuntos
Microbioma Gastrointestinal , Isópteros/parasitologia , Parabasalídeos/classificação , Animais , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Parabasalídeos/citologia , Parabasalídeos/genética , Parabasalídeos/ultraestrutura , RNA de Protozoário/análise , RNA Ribossômico/análise
20.
Acta Parasitol ; 62(4): 858-869, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29035867

RESUMO

We examined 34 lepidopteran species belonging to 12 families to determine presence and prevalence of microsporidian pathogens. The insects were collected from May 2009 to July 2012 from 44 sites in Bulgaria. Nosema species were isolated from Archips xylosteana, Tortrix viridana, Operophtera brumata, Orthosia cerasi, and Orthosia cruda. Endoreticulatus sp. was isolated from Eilema complana. The prevalence of all isolates in their hosts was low and ranged from 1.0% to 5.3%. Phylogenetic analyses of the new isolates based on SSU rDNA are presented.


Assuntos
Lepidópteros/parasitologia , Microsporídios/fisiologia , Animais , Bulgária , Interações Hospedeiro-Parasita , Microsporídios/classificação , Microsporídios/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...