Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Chemistry ; : e202400660, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527187

RESUMO

C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.

2.
Chem Soc Rev ; 52(11): 3663-3740, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37232696

RESUMO

Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.


Assuntos
Carboidratos , Lectinas , Animais , Lectinas/química , Carboidratos/química , Mamíferos/metabolismo
3.
Elife ; 122023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803584

RESUMO

Glycan-binding proteins, so-called lectins, are exposed on mammalian cell surfaces and decipher the information encoded within glycans translating it into biochemical signal transduction pathways in the cell. These glycan-lectin communication pathways are complex and difficult to analyze. However, quantitative data with single-cell resolution provide means to disentangle the associated signaling cascades. We chose C-type lectin receptors (CTLs) expressed on immune cells as a model system to study their capacity to transmit information encoded in glycans of incoming particles. In particular, we used nuclear factor kappa-B-reporter cell lines expressing DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), macrophage C-type lectin (MCL), dectin-1, dectin-2, and macrophage-inducible C-type lectin (MINCLE), as well as TNFαR and TLR-1&2 in monocytic cell lines and compared their transmission of glycan-encoded information. All receptors transmit information with similar signaling capacity, except dectin-2. This lectin was identified to be less efficient in information transmission compared to the other CTLs, and even when the sensitivity of the dectin-2 pathway was enhanced by overexpression of its co-receptor FcRγ, its transmitted information was not. Next, we expanded our investigation toward the integration of multiple signal transduction pathways including synergistic lectins, which is crucial during pathogen recognition. We show how the signaling capacity of lectin receptors using a similar signal transduction pathway (dectin-1 and dectin-2) is being integrated by compromising between the lectins. In contrast, co-expression of MCL synergistically enhanced the dectin-2 signaling capacity, particularly at low-glycan stimulant concentration. By using dectin-2 and other lectins as examples, we demonstrate how signaling capacity of dectin-2 is modulated in the presence of other lectins, and therefore, the findings provide insight into how immune cells translate glycan information using multivalent interactions.


Assuntos
Lectinas Tipo C , Transdução de Sinais , Animais , Lectinas Tipo C/metabolismo , NF-kappa B/metabolismo , Monócitos/metabolismo , Polissacarídeos/metabolismo , Mamíferos/metabolismo
4.
ACS Chem Biol ; 17(10): 2728-2733, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36153965

RESUMO

Langerin is a mammalian C-type lectin expressed on Langerhans cells in the skin. As an innate immune cell receptor, Langerin is involved in coordinating innate and adaptive immune responses against various incoming threats. We have previously reported a series of thiazolopyrimidines as murine Langerin ligands. Prompted by the observation that its human homologue exhibits different binding specificities for these small molecules, we report here our investigations to define their exact binding site. By using structural comparison and molecular dynamics simulations, we showed that the nonconserved short loops have a high degree of conformational flexibility between the human and murine homologues. Sequence analysis and mutational studies indicated that a pair of residues are essential for the recognition of the thiazolopyrimidines. Taking solvent paramagnetic relaxation enhancement NMR studies together with a series of peptides occupying the same site, we could define the cleft between the short and long loops as the allosteric binding site for these aromatic heterocycles.


Assuntos
Lectinas Tipo C , Lectinas de Ligação a Manose , Humanos , Camundongos , Animais , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Sítio Alostérico , Ligantes , Antígenos CD/metabolismo , Sítios de Ligação , Solventes , Mamíferos/metabolismo
5.
ACS Med Chem Lett ; 13(6): 935-942, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35707152

RESUMO

DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) is a pattern recognition receptor expressed on immune cells and involved in the recognition of carbohydrate signatures present on various pathogens, including HIV, Ebola, and SARS-CoV-2. Therefore, developing inhibitors blocking the carbohydrate-binding site of DC-SIGN could generate a valuable tool to investigate the role of this receptor in several infectious diseases. Herein, we performed a fragment-based ligand design using 4-quinolone as a scaffold. We synthesized a library of 61 compounds, performed a screening against DC-SIGN using an STD reporter assay, and validated these data using protein-based 1H-15N HSQC NMR. Based on the structure-activity relationship data, we demonstrate that ethoxycarbonyl or dimethylaminocarbonyl in position 2 or 3 is favorable for the DC-SIGN binding activity, especially in combination with fluorine, ethoxycarbonyl, or dimethylaminocarbonyl in position 7 or 8. Furthermore, we demonstrate that these quinolones can allosterically modulate the carbohydrate binding site, which offers an alternative approach toward this challenging protein target.

6.
Eur J Immunol ; 52(12): 1909-1924, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35598160

RESUMO

The hallmark of DCs is their potent and outstanding capacity to activate naive resting T cells. As such, DCs are the sentinels of the immune system and instrumental for the induction of immune responses. This is one of the reasons, why DCs became the focus of immunotherapeutical strategies to fight infections, cancer, and autoimmunity. Besides the exploration of adoptive DC-therapy for which DCs are generated from monocytes or purified in large numbers from the blood, alternative approaches were developed such as antigen targeting of DCs. The idea behind this strategy is that DCs resident in patients' lymphoid organs or peripheral tissues can be directly loaded with antigens in situ. The proof of principle came from mouse models; subsequent translational studies confirmed the potential of this therapy. The first clinical trials demonstrated feasibility and the induction of T-cell immunity in patients. This review will cover: (i) the historical aspects of antigen targeting, (ii) briefly summarize the biology of DCs and the immunological functions upon which this concept rests, (iii) give an overview on attempts to target DC receptors with antibodies or (glycosylated) ligands, and finally, (iv) discuss the translation of antigen targeting into clinical therapy.


Assuntos
Células Dendríticas , Imunidade , Animais , Camundongos
7.
ACS Appl Bio Mater ; 5(5): 2185-2192, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35435657

RESUMO

Nanoparticles that modulate innate immunity can act as vaccine adjuvants and antigen carriers and are promising alternatives to conventional anticancer therapy. Nanoparticles might, upon contact with serum, activate the complement system that might in turn result in clearance and allergic reactions. Herein, we report that ultrasmall glyconanoparticles decorated with nonimmunogenic α-(1-6)-oligomannans trigger an innate immune response without drastically affecting the complement system. These negatively charged glyconanoparticles (10-15 nm) are stable in water and secrete proinflammatory cytokines from macrophages via the NF-κB signaling pathway. The glyconanoparticles can be used as immunomodulators for monotherapy or in combination with drugs and vaccines.


Assuntos
Imunidade Inata , Nanopartículas , Adjuvantes Imunológicos/farmacologia , Proteínas do Sistema Complemento , Citocinas
8.
Adv Mater ; 34(23): e2200359, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35429012

RESUMO

Laser-induced forward transfer (LIFT) is a rapid laser-patterning technique for high-throughput combinatorial synthesis directly on glass slides. A lack of automation and precision limits LIFT applications to simple proof-of-concept syntheses of fewer than 100 compounds. Here, an automated synthesis instrument is reported that combines laser transfer and robotics for parallel synthesis in a microarray format with up to 10 000 individual reactions cm- 2 . An optimized pipeline for amide bond formation is the basis for preparing complex peptide microarrays with thousands of different sequences in high yield with high reproducibility. The resulting peptide arrays are of higher quality than commercial peptide arrays. More than 4800 15-residue peptides resembling the entire Ebola virus proteome on a microarray are synthesized to study the antibody response of an Ebola virus infection survivor. Known and unknown epitopes that serve now as a basis for Ebola diagnostic development are identified. The versatility and precision of the synthesizer is demonstrated by in situ synthesis of fluorescent molecules via Schiff base reaction and multi-step patterning of precisely definable amounts of fluorophores. This automated laser transfer synthesis approach opens new avenues for high-throughput chemical synthesis and biological screening.


Assuntos
Doenças Transmissíveis , Doença pelo Vírus Ebola , Humanos , Lasers , Peptídeos , Reprodutibilidade dos Testes
9.
Angew Chem Int Ed Engl ; 61(1): e202109339, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34713573

RESUMO

Carbohydrate-binding proteins (lectins) are auspicious targets in drug discovery to combat antimicrobial resistance; however, their non-carbohydrate drug-like inhibitors are still unavailable. Here, we present a druggable pocket in a ß-propeller lectin BambL from Burkholderia ambifaria as a potential target for allosteric inhibitors. This site was identified employing 19 F NMR fragment screening and a computational pocket prediction algorithm SiteMap. The structure-activity relationship study revealed the most promising fragment with a dissociation constant of 0.3±0.1 mM and a ligand efficiency of 0.3 kcal mol-1 HA-1 that affected the orthosteric site. This effect was substantiated by site-directed mutagenesis in the orthosteric and secondary pockets. Future drug-discovery campaigns that aim to develop small molecule inhibitors can benefit from allosteric sites in lectins as a new therapeutic approach against antibiotic-resistant pathogens.


Assuntos
Lectinas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Sítio Alostérico/efeitos dos fármacos , Burkholderia/química , Humanos , Lectinas/metabolismo , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
10.
Chembiochem ; 23(3): e202100563, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34788491

RESUMO

Pseudomonas aeruginosa is an opportunistic ESKAPE pathogen that produces two lectins, LecA and LecB, as part of its large arsenal of virulence factors. Both carbohydrate-binding proteins are central to the initial and later persistent infection processes, i. e. bacterial adhesion and biofilm formation. The biofilm matrix is a major resistance determinant and protects the bacteria against external threats such as the host immune system or antibiotic treatment. Therefore, the development of drugs against the P. aeruginosa biofilm is of particular interest to restore efficacy of antimicrobials. Carbohydrate-based inhibitors for LecA and LecB were previously shown to efficiently reduce biofilm formations. Here, we report a new approach for inhibiting LecA with synthetic molecules bridging the established carbohydrate-binding site and a central cavity located between two LecA protomers of the lectin tetramer. Inspired by in silico design, we synthesized various galactosidic LecA inhibitors with aromatic moieties targeting this central pocket. These compounds reached low micromolar affinities, validated in different biophysical assays. Finally, X-ray diffraction analysis revealed the interactions of this compound class with LecA. This new mode of action paves the way to a novel route towards inhibition of P. aeruginosa biofilms.


Assuntos
Adesinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Carboidratos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Carboidratos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade
11.
Commun Chem ; 5(1): 64, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36697615

RESUMO

Carbohydrate-protein interactions are key for cell-cell and host-pathogen recognition and thus, emerged as viable therapeutic targets. However, their hydrophilic nature poses major limitations to the conventional development of drug-like inhibitors. To address this shortcoming, four fragment libraries were screened to identify metal-binding pharmacophores (MBPs) as novel scaffolds for inhibition of Ca2+-dependent carbohydrate-protein interactions. Here, we show the effect of MBPs on the clinically relevant lectins DC-SIGN, Langerin, LecA and LecB. Detailed structural and biochemical investigations revealed the specificity of MBPs for different Ca2+-dependent lectins. Exploring the structure-activity relationships of several fragments uncovered the functional groups in the MBPs suitable for modification to further improve lectin binding and selectivity. Selected inhibitors bound efficiently to DC-SIGN-expressing cells. Altogether, the discovery of MBPs as a promising class of Ca2+-dependent lectin inhibitors creates a foundation for fragment-based ligand design for future drug discovery campaigns.

12.
Front Immunol ; 12: 732298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745102

RESUMO

Immune modulating therapies and vaccines are in high demand, not least to the recent global spread of SARS-CoV2. To achieve efficient activation of the immune system, professional antigen presenting cells have proven to be key coordinators of such responses. Especially targeted approaches, actively directing antigens to specialized dendritic cells, promise to be more effective and accompanied by reduced payload due to less off-target effects. Although antibody and glycan-based targeting of receptors on dendritic cells have been employed, these are often expensive and time-consuming to manufacture or lack sufficient specificity. Thus, we applied a small-molecule ligand that specifically binds Langerin, a hallmark receptor on Langerhans cells, conjugated to a model protein antigen. Via microneedle injection, this construct was intradermally administered into intact human skin explants, selectively loading Langerhans cells in the epidermis. The ligand-mediated cellular uptake outpaces protein degradation resulting in intact antigen delivery. Due to the pivotal role of Langerhans cells in induction of immune responses, this approach of antigen-targeting of tissue-resident immune cells offers a novel way to deliver highly effective vaccines with minimally invasive administration.


Assuntos
Antígenos CD/metabolismo , Antígenos/administração & dosagem , Proteínas de Fluorescência Verde/administração & dosagem , Células de Langerhans/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Animais , Antígenos/imunologia , Antígenos/metabolismo , Células COS , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Injeções Intradérmicas , Células de Langerhans/imunologia , Ligantes , Miniaturização , Nanomedicina , Agulhas , Ligação Proteica , Transporte Proteico , Proteólise , Células THP-1 , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/metabolismo
13.
J Am Chem Soc ; 143(45): 18977-18988, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34748320

RESUMO

Dendritic cells (DC) are antigen-presenting cells coordinating the interplay of the innate and the adaptive immune response. The endocytic C-type lectin receptors DC-SIGN and Langerin display expression profiles restricted to distinct DC subtypes and have emerged as prime targets for next-generation immunotherapies and anti-infectives. Using heteromultivalent liposomes copresenting mannosides bearing aromatic aglycones with natural glycan ligands, we serendipitously discovered striking cooperativity effects for DC-SIGN+ but not for Langerin+ cell lines. Mechanistic investigations combining NMR spectroscopy with molecular docking and molecular dynamics simulations led to the identification of a secondary binding pocket for the glycomimetics. This pocket, located remotely of DC-SIGN's carbohydrate bindings site, can be leveraged by heteromultivalent avidity enhancement. We further present preliminary evidence that the aglycone allosterically activates glycan recognition and thereby contributes to DC-SIGN-specific cell targeting. Our findings have important implications for both translational and basic glycoscience, showcasing heteromultivalent targeting of DCs to improve specificity and supporting potential allosteric regulation of DC-SIGN and CLRs in general.


Assuntos
Moléculas de Adesão Celular/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Antígenos CD/metabolismo , Sítios de Ligação , Moléculas de Adesão Celular/química , Linhagem Celular Tumoral , Humanos , Lectinas Tipo C/química , Ligantes , Lipossomos/química , Lipossomos/metabolismo , Lectinas de Ligação a Manose/metabolismo , Manosídeos/química , Manosídeos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores de Superfície Celular/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
14.
Front Chem ; 9: 669969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046397

RESUMO

Carbohydrates are present on every living cell and coordinate important processes such as self/non-self discrimination. They are amongst the first molecular determinants to be encountered when cellular interactions are initiated. In particular, they resemble essential molecular fingerprints such as pathogen-, danger-, and self-associated molecular patterns guiding key decision-making in cellular immunology. Therefore, a deeper understanding of how cellular receptors of the immune system recognize incoming particles, based on their carbohydrate signature and how this information is translated into a biological response, will enable us to surgically manipulate them and holds promise for novel therapies. One approach to elucidate these early recognition events of carbohydrate interactions at cellular surfaces is the use of nanoparticles coated with defined carbohydrate structures. These particles are captured by carbohydrate receptors and initiate a cellular cytokine response. In the case of endocytic receptors, the capturing enables the engulfment of exogenous particles. Thereafter, the particles are sorted and degraded during their passage in the endolysosomal pathway. Overall, these processes are dependent on the nature of the endocytic carbohydrate receptors and consequently reflect upon the carbohydrate patterns on the exogenous particle surface. This interplay is still an under-studied subject. In this review, we summarize the application of nanoparticles as a promising tool to monitor complex carbohydrate-protein interactions in a cellular context and their application in areas of biomedicine.

15.
J Biol Chem ; 296: 100718, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989634

RESUMO

The C-type lectin receptor langerin plays a vital role in the mammalian defense against invading pathogens. Langerin requires a Ca2+ cofactor, the binding affinity of which is regulated by pH. Thus, Ca2+ is bound when langerin is on the membrane but released when langerin and its pathogen substrate traffic to the acidic endosome, allowing the substrate to be degraded. The change in pH is sensed by protonation of the allosteric pH sensor histidine H294. However, the mechanism by which Ca2+ is released from the buried binding site is not clear. We studied the structural consequences of protonating H294 by molecular dynamics simulations (total simulation time: about 120 µs) and Markov models. We discovered a relay mechanism in which a proton is moved into the vicinity of the Ca2+-binding site without transferring the initial proton from H294. Protonation of H294 unlocks a conformation in which a protonated lysine side chain forms a hydrogen bond with a Ca2+-coordinating aspartic acid. This destabilizes Ca2+ in the binding pocket, which we probed by steered molecular dynamics. After Ca2+ release, the proton is likely transferred to the aspartic acid and stabilized by a dyad with a nearby glutamic acid, triggering a conformational transition and thus preventing Ca2+ rebinding. These results show how pH regulation of a buried orthosteric binding site from a solvent-exposed allosteric pH sensor can be realized by information transfer through a specific chain of conformational arrangements.


Assuntos
Antígenos CD/metabolismo , Cálcio/metabolismo , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Antígenos CD/química , Sítios de Ligação , Humanos , Concentração de Íons de Hidrogênio , Lectinas Tipo C/química , Lectinas de Ligação a Manose/química , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Prótons
16.
Angew Chem Int Ed Engl ; 60(24): 13302-13309, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33784430

RESUMO

Protein-glycan interactions mediate important biological processes, including pathogen host invasion and cellular communication. Herein, we showcase an expedite approach that integrates automated glycan assembly (AGA) of 19 F-labeled probes and high-throughput NMR methods, enabling the study of protein-glycan interactions. Synthetic Lewis type 2 antigens were screened against seven glycan binding proteins (GBPs), including DC-SIGN and BambL, respectively involved in HIV-1 and lung infections in immunocompromised patients, confirming the preference for fucosylated glycans (Lex , H type 2, Ley ). Previously unknown glycan-lectin weak interactions were detected, and thermodynamic data were obtained. Enzymatic reactions were monitored in real-time, delivering kinetic parameters. These results demonstrate the utility of AGA combined with 19 F NMR for the discovery and characterization of glycan-protein interactions, opening up new perspectives for 19 F-labeled complex glycans.


Assuntos
Proteínas de Bactérias/metabolismo , Moléculas de Adesão Celular/metabolismo , Flúor/química , Lectinas Tipo C/metabolismo , Lectinas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Burkholderia/metabolismo , Moléculas de Adesão Celular/química , Glicosilação , Cinética , Lectinas/química , Lectinas Tipo C/química , Polissacarídeos/química , Ligação Proteica , Receptores de Superfície Celular/química
17.
ACS Infect Dis ; 7(3): 624-635, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33591717

RESUMO

Staphylococcus aureus is the leading cause of skin and soft tissue infections. It remains incompletely understood how skin-resident immune cells respond to invading S. aureus and contribute to an effective immune response. Langerhans cells (LCs), the only professional antigen-presenting cell type in the epidermis, sense S. aureus through their pattern-recognition receptor langerin, triggering a proinflammatory response. Langerin recognizes the ß-1,4-linked N-acetylglucosamine (ß1,4-GlcNAc) but not α-1,4-linked GlcNAc (α1,4-GlcNAc) modifications, which are added by dedicated glycosyltransferases TarS and TarM, respectively, on the cell wall glycopolymer wall teichoic acid (WTA). Recently, an alternative WTA glycosyltransferase, TarP, was identified, which also modifies WTA with ß-GlcNAc but at the C-3 position (ß1,3-GlcNAc) of the WTA ribitol phosphate (RboP) subunit. Here, we aimed to unravel the impact of ß-GlcNAc linkage position for langerin binding and LC activation. Using genetically modified S. aureus strains, we observed that langerin similarly recognized bacteria that produce either TarS- or TarP-modified WTA, yet tarP-expressing S. aureus induced increased cytokine production and maturation of in vitro-generated LCs compared to tarS-expressing S. aureus. Chemically synthesized WTA molecules, representative of the different S. aureus WTA glycosylation patterns, were used to identify langerin-WTA binding requirements. We established that ß-GlcNAc is sufficient to confer langerin binding, thereby presenting synthetic WTA molecules as a novel glycobiology tool for structure-binding studies and for elucidating S. aureus molecular pathogenesis. Overall, our data suggest that LCs are able to sense all ß-GlcNAc-WTA producing S. aureus strains, likely performing an important role as first responders upon S. aureus skin invasion.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Células de Langerhans , Polissacarídeos , Staphylococcus aureus/genética , Ácidos Teicoicos
18.
Glycobiology ; 31(2): 159-165, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-32573695

RESUMO

The carbohydrate-binding protein LecA (PA-IL) from Pseudomonas aeruginosa plays an important role in the formation of biofilms in chronic infections. Development of inhibitors to disrupt LecA-mediated biofilms is desired but it is limited to carbohydrate-based ligands. Moreover, discovery of drug-like ligands for LecA is challenging because of its weak affinities. Therefore, we established a protein-observed 19F (PrOF) nuclear magnetic resonance (NMR) to probe ligand binding to LecA. LecA was labeled with 5-fluoroindole to incorporate 5-fluorotryptophanes and the resonances were assigned by site-directed mutagenesis. This incorporation did not disrupt LecA preference for natural ligands, Ca2+ and d-galactose. Following NMR perturbation of W42, which is located in the carbohydrate-binding region of LecA, allowed to monitor binding of low-affinity ligands such as N-acetyl d-galactosamine (d-GalNAc, Kd = 780 ± 97 µM). Moreover, PrOF NMR titration with glycomimetic of LecA p-nitrophenyl ß-d-galactoside (pNPGal, Kd = 54 ± 6 µM) demonstrated a 6-fold improved binding of d-Gal proving this approach to be valuable for ligand design in future drug discovery campaigns that aim to generate inhibitors of LecA.


Assuntos
Adesinas Bacterianas/análise , Pseudomonas aeruginosa/química , Configuração de Carboidratos , Imagem por Ressonância Magnética de Flúor-19 , Modelos Moleculares , Proteínas Recombinantes/análise
19.
J Invest Dermatol ; 141(1): 84-94.e6, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32522485

RESUMO

Langerhans cells (LCs) in the skin are a first line of defense against pathogens but also play an essential role in skin homeostasis. Their exclusive expression of the C-type lectin receptor Langerin makes them prominent candidates for immunotherapy. For vaccine testing, an easily accessible cell platform would be desirable as an alternative to the time-consuming purification of LCs from human skin. Here, we present such a model and demonstrate that monocytes in the presence of GM-CSF, TGF-ß1, and the Notch ligand DLL4 differentiate within 3 days into CD1a+Langerin+cells containing Birbeck granules. RNA sequencing of these monocyte-derived LCs (moLCs) confirmed gene expression of LC-related molecules, pattern recognition receptors, and enhanced expression of genes involved in the antigen-presenting machinery. On the protein level, moLCs showed low expression of costimulatory molecules but prominent expression of C-type lectin receptors. MoLCs can be matured, secrete IL-12p70 and TNF-α, and stimulate proliferation and cytokine production in allogeneic CD4+ and CD8+ T cells. In regard to vaccine testing, a recently characterized glycomimetic Langerin ligand conjugated to liposomes demonstrated specific and fast internalization into moLCs. Hence, these short-term in vitro‒generated moLCs represent an interesting tool to screen LC-based vaccines in the future.


Assuntos
Células Dendríticas/imunologia , Células de Langerhans/imunologia , Ativação Linfocitária/imunologia , Monócitos/imunologia , Pele/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Células Dendríticas/patologia , Humanos , Células de Langerhans/patologia , Fenótipo , Pele/patologia
20.
Angew Chem Int Ed Engl ; 60(15): 8104-8114, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33314528

RESUMO

Because of the antimicrobial resistance crisis, lectins are considered novel drug targets. Pseudomonas aeruginosa utilizes LecA and LecB in the infection process. Inhibition of both lectins with carbohydrate-derived molecules can reduce biofilm formation to restore antimicrobial susceptibility. Here, we focused on non-carbohydrate inhibitors for LecA to explore new avenues for lectin inhibition. From a screening cascade we obtained one experimentally confirmed hit, a catechol, belonging to the well-known PAINS compounds. Rigorous analyses validated electron-deficient catechols as millimolar LecA inhibitors. The first co-crystal structure of a non-carbohydrate inhibitor in complex with a bacterial lectin clearly demonstrates the catechol mimicking the binding of natural glycosides with LecA. Importantly, catechol 3 is the first non-carbohydrate lectin ligand that binds bacterial and mammalian calcium(II)-binding lectins, giving rise to this fundamentally new class of glycomimetics.


Assuntos
Adesinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Cálcio/metabolismo , Glicosídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Adesinas Bacterianas/química , Antibacterianos/química , Catecóis/química , Glicosídeos/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pseudomonas aeruginosa/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...