Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721889

RESUMO

The European honey bee (Apis mellifera) is an important crop pollinator threatened by multiple stressors, including exposure to contaminants. Perfluorooctane sulfonate (PFOS) is a persistent global contaminant that accumulates and biomagnifies in food chains and is detected in honey. Even sublethal exposure to PFOS is detrimental to bee health, but exposure routes are unclear and nothing is known about bee response (detection, avoidance, or attraction) to PFOS. Using Y-mazes, we studied the response of individual bees to PFOS-spiked sugar syrup at four concentrations, 0.02, 30, 61 and 103 µg L-1. Bee activity, choice behavior, and drink duration for unspiked and spiked sugar syrup was recorded for 10 min in the Y-maze system. Most bees (≥80%) tasted and then drank the sugar syrup solutions, including the PFOS-contaminated syrup. Only at 61 and 103 µg L-1 did bees significantly avoid drinking PFOS-spiked syrup, and only when given a choice with unspiked syrup. When the choice of consuming unspiked syrup was removed, the bees drank PFOS-spiked syrup at all the PFOS concentrations tested, and avoidance was not evident. Avoidance was not observed in any treatment at 0.02 or 30 µg L-1 PFOS, concentrations that are frequently reported in environmental waters in contaminated areas. These findings confirm that bees will access PFOS-contaminated resources at concentrations detrimental to the colony health, and provide evidence of potential exposure pathways that may threaten crop pollination services and also human health via food chain transfer in PFOS-contaminated areas. Environ Toxicol Chem 2024;00:1-10. © 2024 SETAC.

2.
Insects ; 14(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37233067

RESUMO

The addition of floral resources is a common intervention to support the adult life stages of key crop pollinators. Fly (Diptera) crop pollinators, however, typically do not require floral resources in their immature life stages and are likely not supported by this management intervention. Here, we deployed portable pools filled with habitat (decaying plant materials, soil, water) in seed carrot agroecosystems with the intention of providing reproduction sites for beneficial syrphid (tribe Eristalini) fly pollinators. Within 12 to 21 days after the pools were deployed, we found that the habitat pools supported the oviposition and larval development of two species of eristaline syrphid flies, Eristalis tenax (Linnaeus, 1758) and Eristalinus punctulatus (Macquart, 1847). Each habitat pool contained an average (±S.E.) of 547 ± 117 eristaline fly eggs and 50 ± 17 eristaline fly larvae. Additionally, we found significantly more eggs were laid on decaying plant stems and carrot roots compared to other locations within the pool habitat (e.g., on decaying carrot umbels, leaves, etc.). These results suggest that deploying habitat pools in agroecosystems can be a successful management intervention that rapidly facilitates fly pollinator reproduction. This method can be used to support future studies to determine if the addition of habitat resources on intensively cultivated farms increases flower visitation and crop pollination success by flies.

3.
Appl Plant Sci ; 11(2): e11514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051582

RESUMO

Premise: Pollen collected by honey bees from different plant species often differs in color, and this has been used as a basis for plant identification. The objective of this study was to develop a new, low-cost protocol to sort pollen pellets by color using high-energy violet light and visible light to determine whether pollen pellet color is associated with variations in plant species identity. Methods and Results: We identified 35 distinct colors and found that 52% of pollen subsamples (n = 200) were dominated by a single taxon. Among these near-pure pellets, only one color consistently represented a single pollen taxon (Asteraceae: Cichorioideae). Across the spectrum of colors spanning yellows, oranges, and browns, similarly colored pollen pellets contained pollen from multiple plant families ranging from two to 13 families per color. Conclusions: Sorting pollen pellets illuminated under high-energy violet light lit from four directions within a custom-made light box aided in distinguishing pellet composition, especially in pellets within the same color.

4.
Ecol Appl ; 33(5): e2859, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37092886

RESUMO

Insects are important pollinators of global food crops and wild plants. The adult and larval diet and habitat needs are well known for many bee taxa, but poorly understood for other pollinating taxa. Non-bee pollinators often feed on different substrates in their larval and adult life stages, and this diet and habitat diversity has important implications for their conservation and management. We reviewed the global literature on crop pollinating Diptera (the true flies) to identify both larval and adult fly diet and habitat needs. We then assembled the published larval and adult diets and habitat needs of beneficial fly pollinators found globally into a freely accessible database. Of the 405 fly species known to visit global food crops, we found relevant published evidence regarding larval and adult diet and habitat information for 254 species, which inhabited all eight global biogeographic regions. We found the larvae of these species lived in 35 different natural habitats and belong to 10 different feeding guilds. Additionally, differences between adult Diptera sexes also impacted diet needs; females from 14 species across five families fed on protein sources other than pollen to start the reproductive process of oogenesis (egg development) while males of the same species fed exclusively on pollen and nectar. While all adult species fed at least partially on floral nectar and/or pollen, only five species were recorded feeding on pollen and no fly larvae fed on nectar. Of the 242 species of larvae with established diet information, 33% were predators (n = 79) and 30% were detritivores (n = 73). Detritivores were the most generalist taxa and utilized 17 different habitats and 12 different feeding substrates. Of all fly taxa, only 2% belonged to the same feeding guild in both active life stages. Our results show that many floral management schemes may be insufficient to support pollinating Diptera. Pollinator conservation strategies in agroecosystems should consider other non-floral resources, such as wet organic materials and dung, as habitats for beneficial fly larvae.


Assuntos
Dípteros , Néctar de Plantas , Animais , Abelhas , Larva , Polinização , Ecossistema , Produtos Agrícolas , Dieta , Flores
5.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210170, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491607

RESUMO

Bee and non-bee insect pollinators play an integral role in the quantity and quality of production for many food crops, yet there is growing evidence that nutritional challenges to pollinators in agricultural landscapes are an important factor in the reduction of pollinator populations worldwide. Schemes to enhance crop pollinator health have historically focused on floral resource plantings aimed at increasing pollinator abundance and diversity by providing more foraging opportunities for bees. These efforts have demonstrated that improvements in bee diversity and abundance are achievable; however, goals of increasing crop pollination outcomes via these interventions are not consistently met. To support pollinator health and crop pollination outcomes in tandem, habitat enhancements must be tailored to meet the life-history needs of specific crop pollinators, including non-bees. This will require greater understanding of the nutritional demands of these taxa together with the supply of floral and non-floral food resources and how these interact in cropping environments. Understanding the mechanisms underlying crop pollination and pollinator health in unison across a range of taxa is clearly a win-win for industry and conservation, yet achievement of these goals will require new knowledge and novel, targeted methods. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Produção Agrícola , Polinização , Agricultura , Animais , Abelhas , Produtos Agrícolas , Ecossistema
6.
Sci Rep ; 12(1): 3222, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217699

RESUMO

Hybrid crop production is more reliant on pollinators compared to open-pollinated crops because they require cross-pollination between a male-fertile and a male-sterile line. Little is known about how stigma receipt of pollen from male-sterile genotypes affects reproduction in hybrids. Non-viable and non-compatible pollen cannot fertilise plant ovules, but may still interfere with pollination success. Here we used seedless watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) as a model hybrid plant, to evaluate the morphology, physiology, and movement of pollen from inter-planted genotypes (diploids and triploids). We found that pollen from triploids ('Exclamation' and 'Royal Armada') and diploids ('SP-6', 'Summer Flavor 800', and 'Tiger') was visually distinguishable. Pollen in triploids had more deformities (42.4-46%), tetrads (43-44%), and abnormal growth of callose plugs in pollen tubes. The amount of pollen in triploids to germinate on stigmas was low (8 ± 3%), and few pollen grains produced pollen tubes (6.5 ± 2%). Still, contrary to previous reports our results suggest that some viable pollen grains are produced by triploid watermelons. However, whilst honey bees can collect and deposit pollen from triploids onto stigmas, its effect on hybrid watermelon reproduction is likely to be minimal due to its low germination rate.


Assuntos
Citrullus , Triploidia , Animais , Abelhas/genética , Citrullus/genética , Produção Agrícola , Flores/fisiologia , Masculino , Pólen/genética , Polinização
7.
Ecol Appl ; 32(4): e2537, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038208

RESUMO

Flower visitors use different parts of the landscape through the plants they visit, however these connections vary within and among land uses. Identifying which flower-visiting insects are carrying pollen, and from where in the landscape, can elucidate key pollen-insect interactions and identify the most important sites for maintaining community-level interactions across land uses. We developed a bipartite meta-network, linking pollen-insect interactions with the sites they occur in. We used this to identify which land-use types at the site- and landscape-scale (within 500 m of a site) are most important for conserving pollen-insect interactions. We compared pollen-insect interactions across four different land uses (remnant native forest, avocado orchard, dairy farm, rotational potato crop) within a mosaic agricultural landscape. We sampled insects using flight intercept traps, identified pollen carried on their bodies and quantified distinct pollen-insect interactions that were highly specialized to both natural and modified land uses. We found that sites in crops and dairy farms had higher richness of pollen-insect interactions and higher interaction strength than small forest patches and orchards. Further, many interactions involved pollinator groups such as flies, wasps, and beetles that are often under-represented in pollen-insect network studies, but were often connector species in our networks. These insect groups require greater attention to enable wholistic pollinator community conservation. Pollen samples were dominated by grass (Poaceae) pollen, indicating anemophilous plant species may provide important food resources for pollinators, particularly in modified land uses. Field-scale land use (within 100 m of a site) better predicted pollen-insect interaction richness, uniqueness, and strength than landscape-scale. Thus, management focused at smaller scales may provide more tractable outcomes for conserving or restoring pollen-insect interactions in modified landscapes. For instance, actions aimed at linking high-richness sites with those containing unique (i.e., rare) interactions by enhancing floral corridors along field boundaries and between different land uses may best aid interaction diversity and connectance. The ability to map interactions across sites using a meta-network approach is practical and can inform land-use planning, whereby conservation efforts can be targeted toward areas that host key interactions between plant and pollinator species.


Assuntos
Ecossistema , Polinização , Animais , Produtos Agrícolas , Insetos , Poaceae , Pólen
8.
Ecology ; 103(3): e3614, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921678

RESUMO

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-2005 (21 studies), 2006-2010 (40), 2011-2015 (88), and 2016-2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Produtos Agrícolas , Flores , Insetos
9.
Ecol Appl ; 31(8): e02445, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34448315

RESUMO

Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to pollination and identifying opportunities to protect or improve crop yield and quality through pollination management is therefore of international importance. To explore the extent of "pollination deficits," where maximum yield is not being achieved due to insufficient pollination, we used an extensive dataset on a globally important crop, apples. We quantified how these deficits vary between orchards and countries and we compared "pollinator dependence" across different apple varieties. We found evidence of pollination deficits and, in some cases, risks of overpollination were even apparent for which fruit quality could be reduced by too much pollination. In almost all regions studied we found some orchards performing significantly better than others in terms of avoiding a pollination deficit and crop yield shortfalls due to suboptimal pollination. This represents an opportunity to improve production through better pollinator and crop management. Our findings also demonstrated that pollinator dependence varies considerably between apple varieties in terms of fruit number and fruit quality. We propose that assessments of pollination service and deficits in crops can be used to quantify supply and demand for pollinators and help to target local management to address deficits although crop variety has a strong influence on the role of pollinators.


Assuntos
Malus , Polinização , Animais , Abelhas , Produtos Agrícolas , Frutas , Insetos
10.
Integr Environ Assess Manag ; 17(4): 673-683, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33829642

RESUMO

Bees provide pollination services to managed and wild ecosystems but are threatened globally due to multiple stressors, including exposure to contaminants. Perfluorooctane sulfonate (PFOS) is a widely detected and persistent contaminant that accumulates and biomagnifies in food chains. In this exposure effect study, small whole colonies of Apis mellifera (1000 bees) were exposed to PFOS using a purpose-built cage system over a 4-week period. The PFOS exposure concentrations were provided to bees in sugar syrup at concentrations detected in the environment, ranging from 0 to 1.6 mg L-1 . A range of biological and behavioral responses were monitored. Bee tissue, honey, and fecal matter were analyzed using isotope dilution combined with liquid chromatography-tandem mass spectrometry adapted for bee and honey matrix analysis. Bee mortality increased significantly with PFOS exposure at 0.8 mg L-1  or greater, and brood development ceased entirely at 0.02 mg L-1  or greater. Colony activity, temperament, hive maintenance, and defense were adversely affected in all PFOS exposure treatments compared with the control, even at the lowest PFOS exposure of 0.02 mg L-1 . Perfluorooctane sulfonate was detected in bee tissue with a mean bioaccumulation factor of 0.3, and it was also identified in honey and in feces collected from the hive cages. These findings provide the first evidence that PFOS exposure adversely affects honey bee colonies and may transfer to honey. With PFOS contaminating thousands of sites worldwide, our study has implications for exposed bee populations under natural conditions, pollination services, the honey industry, and human health. Integr Environ Assess Manag 2021;17:673-683. © 2021 SETAC.


Assuntos
Ecossistema , Polinização , Ácidos Alcanossulfônicos , Animais , Abelhas , Fluorocarbonos
11.
Sci Rep ; 11(1): 6635, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758263

RESUMO

Insects are essential for the reproduction of pollinator-dependent crops and contribute to the pollination of 87% of wild plants and 75% of the world's food crops. Understanding pollen flow dynamics between plants and pollinators is thus essential to manage and conserve wild plants and ensure yields are maximized in food crops. However, the determination of pollen transfer in the field is complex and laborious. We developed a field experiment in a pollinator-dependent crop and used high throughput RNA sequencing (RNA-seq) to quantify pollen flow by measuring changes in gene expression between pollination treatments across different apple (Malus domestica Borkh.) cultivars. We tested three potential molecular indicators of successful pollination and validated these results with field data by observing single and multiple visits by honey bees (Apis mellifera) to apple flowers and measured fruit set in a commercial apple orchard. The first indicator of successful outcrossing was revealed via differential gene expression in the cross-pollination treatments after 6 h. The second indicator of successful outcrossing was revealed by the expression of specific genes related to pollen tube formation and defense response at three different time intervals in the stigma and the style following cross-pollination (i.e. after 6, 24, and 48 h). Finally, genotyping variants specific to donor pollen could be detected in cross-pollination treatments, providing a third indicator of successful outcrossing. Field data indicated that one or five flower visits by honey bees were insufficient and at least 10 honey bee flower visits were required to achieve a 25% probability of fruit set under orchard conditions. By combining the genotyping data, the differential expression analysis, and the traditional fruit set field experiments, it was possible to evaluate the pollination effectiveness of honey bee visits under orchards conditions. This is the first time that pollen-stigma-style mRNA expression analysis has been conducted after a pollinator visit (honey bee) to a plant (in vivo apple flowers). This study provides evidence that mRNA sequencing can be used to address complex questions related to stigma-pollen interactions over time in pollination ecology.


Assuntos
Flores/genética , Fenômenos Fisiológicos Vegetais , Pólen/genética , Polinização/fisiologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Polimorfismo de Nucleotídeo Único , Reprodução
12.
Sci Rep ; 11(1): 5256, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664383

RESUMO

Factors influencing the efficacy of insectivorous vertebrates in providing natural pest control services inside crops at increasing distances from the crop edge are poorly understood. We investigated the identity of vertebrate predators (birds and bats) and removal of sentinel prey (mealworms and beetles) from experimental feeding trays in cotton crops using prey removal trials, camera traps and observations. More prey was removed during the day than at night, but prey removal was variable at the crop edge and dependent on the month (reflecting crop growth and cover) and time of day. Overall, the predation of mealworms and beetles was 1-times and 13-times greater during the day than night, respectively, with predation on mealworms 3-5 times greater during the day than night at the crop edge compared to 95 m inside the crop. Camera traps identified many insectivorous birds and bats over crops near the feeding trays, but there was no evidence of bats or small passerines removing experimental prey. A predation gradient from the crop edge was evident, but only in some months. This corresponded to the foraging preferences of open-space generalist predators (magpies) in low crop cover versus the shrubby habitat preferred by small passerines, likely facilitating foraging away from the crop edge later in the season. Our results are in line with Optimal Foraging Theory and suggest that predators trade-off foraging behaviour with predation risk at different distances from the crop edge and levels of crop cover. Understanding the optimal farm configuration to support insectivorous bird and bat populations can assist farmers to make informed decisions regarding in-crop natural pest control and maximise the predation services provided by farm biodiversity.


Assuntos
Aves/fisiologia , Quirópteros/fisiologia , Comportamento Alimentar/fisiologia , Comportamento Predatório/fisiologia , Agricultura , Animais , Besouros/patogenicidade , Produtos Agrícolas/parasitologia , Florestas , Gossypium/parasitologia
13.
Proc Biol Sci ; 288(1947): 20210212, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33726596

RESUMO

While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.


Assuntos
Ecossistema , Polinização , Agricultura , Animais , Abelhas , Biodiversidade , Produtos Agrícolas , Insetos
14.
Environ Entomol ; 50(2): 348-358, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33479744

RESUMO

Weather conditions, such as humidity, temperature, and wind speed, affect insect activity. Understanding how different taxa respond to varying environmental conditions is necessary to determine the extent to which environmental change may impact plant-pollinator networks. This is particularly important in alpine regions where taxa may be more susceptible to extreme climatic events and overall increases in temperature. We observed plant-flower visitor interactions in Australian alpine plant communities to determine 1) the structure of the plant-flower visitor community, and 2) how floral visitation and diversity of insect taxa varied according to environmental conditions and habitat type. Coleoptera and Diptera were the most dominant flower visitors in the visitation networks. Most insect orders were moderately generalized in their interactions, but Hymenoptera showed greater specialization (d') at exposed sites compared to other insect orders. Importantly, insect orders behaved differently in response to changes in environmental conditions. Hymenoptera visitation increased with higher temperatures. Diptera was the only taxon observed actively moving between flowers under inclement conditions. Our results demonstrate the value in sampling across the spectrum of environmental conditions to capture the differences among flower visiting insect taxa in their responses to varying environmental conditions. A diversity of responses among insect taxa could facilitate community-level resilience to changing environmental conditions.


Assuntos
Flores , Polinização , Animais , Austrália , Insetos , Tempo (Meteorologia)
15.
Sci Rep ; 10(1): 16958, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046738

RESUMO

Pollination services from animals are critical for both crop production and reproduction in wild plant species. Accurately measuring the relative contributions of different animal taxa to pollination service delivery is essential for identifying key pollinators. However, widely used measures of pollinator effectiveness (e.g., single visit pollen deposition) may be inaccurate where plant reproduction is strongly constrained by pollen quality. Here, we test the efficacy of single and multiple pollinator visits for measuring pollinator performance in a model plant species (apple, Malus domestica Borkh) that is strongly limited by pollen quality. We determined pollination success using a suite of measures (pollen deposition, pollen tube growth, fruit and seed set) from single and multiple pollinator visits. We found that pollen deposition from a single pollinator visit seldom resulted in the growth of pollen tubes capable of eliciting ovule fertilisation and never resulted in fruit or seed production. In contrast, multiple pollinator visits frequently initiated the growth of pollen tubes capable of ovule fertilisation and often led to fruit and seed production. Our findings suggest that single visit pollen deposition may provide a poor measure of pollinator performance when linked to reproductive success of plant species that are constrain by pollen quality. Alternatively, pollen tube growth from single and multiple pollinator visits can provide a measure of pollinator performance that is more closely linked to plant reproduction.


Assuntos
Abelhas/fisiologia , Malus/fisiologia , Tubo Polínico/crescimento & desenvolvimento , Pólen/fisiologia , Polinização/fisiologia , Reprodução/fisiologia , Animais
17.
Insects ; 11(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498457

RESUMO

Australian horticulture relies heavily on the introduced managed honey bee, Apis mellifera Linnaeus 1758 (Hymenoptera: Apidae), to pollinate crops. Given the risks associated with reliance upon a single species, it would be prudent to identify other taxa that could be managed to provide crop pollination services. We reviewed the literature relating to the distribution, efficiency and management potential of a number of flies (Diptera) known to visit pollinator-dependent crops in Australia and worldwide. Applying this information, we identified the taxa most suitable to play a greater role as managed pollinators in Australian crops. Of the taxa reviewed, flower visitation by representatives from the dipteran families Calliphoridae, Rhiniidae and Syrphidae was frequently reported in the literature. While data available are limited, there was clear evidence of pollination by these flies in a range of crops. A review of fly morphology, foraging behaviour and physiology revealed considerable potential for their development as managed pollinators, either alone or to augment honey bee services. Considering existing pollination evidence, along with the distribution, morphology, behaviour and life history traits of introduced and endemic species, 11 calliphorid, two rhiniid and seven syrphid species were identified as candidates with high potential for use in Australian managed pollination services. Research directions for the comprehensive assessment of the pollination abilities of the identified taxa to facilitate their development as a pollination service are described. This triage approach to identifying species with high potential to become significant managed pollinators at local or regional levels is clearly widely applicable to other countries and taxa.

18.
J Econ Entomol ; 113(3): 1337-1346, 2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32188974

RESUMO

Wild and managed bees provide effective crop pollination services worldwide. Protected cropping conditions are thought to alter the ambient environmental conditions in which pollinators forage for flowers, yet few studies have compared conditions at the edges and center of growing tunnels. We measured environmental variables (temperature, relative humidity, wind speed, white light, and UV light) and surveyed activity of the managed honey bee, Apis mellifera L.; wild stingless bee, Tetragonula carbonaria Smith; and wild sweat bee, Homalictus urbanus Smith, along the length of 32 multiple open-ended polyethylene growing tunnels. These were spaced across 12 blocks at two commercial berry farms, in Coffs Harbour, New South Wales and Walkamin, North Queensland, Australia. Berry yield, fresh weight, and other quality metrics were recorded at discrete increments along the length of the tunnels. We found a higher abundance and greater number of flower visits by stingless bees and honey bees at the end of tunnels, and less frequent visits to flowers toward the middle of tunnels. The center of tunnels experienced higher temperatures and reduced wind speed. In raspberry, fruit shape was improved with greater pollinator abundance and was susceptible to higher temperatures. In blueberry, per plant yield and mean berry weight were positively associated with pollinator abundance and were lower at the center of tunnels than at the edge. Fruit quality (crumbliness) in raspberries was improved with a greater number of visits by sweat bees, who were not as susceptible to climatic conditions within tunnels. Understanding bee foraging behavior and changes to yield under protected cropping conditions is critical to inform the appropriate design of polytunnels, aid pollinator management within them, and increase economic gains in commercial berry crops.


Assuntos
Frutas , Polinização , Animais , Austrália , Abelhas , Flores , New South Wales , Queensland
19.
Ecol Evol ; 10(1): 371-388, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31988733

RESUMO

Insectivorous bats are efficient predators of pest arthropods in agroecosystems. This pest control service has been estimated to be worth billions of dollars to agriculture globally. However, few studies have explicitly investigated the composition and abundance of dietary prey items consumed or assessed the ratio of pest and beneficial arthropods, making it difficult to evaluate the quality of the pest control service provided. In this study, we used metabarcoding to identify the prey items eaten by insectivorous bats over the cotton-growing season in an intensive cropping region in northern New South Wales, Australia. We found that seven species of insectivorous bat (n = 58) consumed 728 prey species, 13 of which represented around 50% of total prey abundance consumed. Importantly, the identified prey items included major arthropod pests, comprising 65% of prey relative abundance and 13% of prey species recorded. Significant cotton pests such as Helicoverpa punctigera (Australian bollworm) and Achyra affinitalis (cotton webspinner) were detected in at least 76% of bat fecal samples, with Teleogryllus oceanicus (field crickets), Helicoverpa armigera (cotton bollworm), and Crocidosema plebejana (cotton tipworm) detected in 55% of bat fecal samples. Our results indicate that insectivorous bats are selective predators that exploit a narrow selection of preferred pest taxa and potentially play an important role in controlling lepidopteran pests on cotton farms. Our study provides crucial information for farmers to determine the service or disservice provided by insectivorous bats in relation to crops, for on-farm decision making.

20.
Sci Adv ; 5(10): eaax0121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663019

RESUMO

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


Assuntos
Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Agricultura/métodos , Biodiversidade , Produção Agrícola/métodos , Ecossistema , Humanos , Controle Biológico de Vetores/métodos , Polinização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...