Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sex Dev ; 9(3): 155-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26184845

RESUMO

The SOX gene family includes many genes that play a determinant role in several developmental pathways. The SOX9 gene has been identified as a major factor in testis development in mammals after it is activated by the SRY gene. However, duplication of the gene itself in some mammalian species, or of a well-delimited upstream 'RevSex' region in humans, has been shown to result in testis development in the absence of the SRY gene. In the current study, we present an accurate analysis of the genomic organization of the SOX9 locus in dogs by both in silico and FISH approaches. Contrary to what is observed in the current dog genome assembly, we found that the genomic organization is quite similar to that reported in humans and other mammalian species, including the position of the RevSex region in respect to SOX9. The analysis of the conserved sequences within this region in 7 mammalian species facilitated the highlighting of a consensus sequence for SRY binding. This new information could help in the identification of evolutionarily conserved elements relevant for SOX9 gene regulation, and could provide valid targets for mutation analysis in XY DSD patients.


Assuntos
Cães/genética , Genoma , Fatores de Transcrição SOX9/genética , Animais , Pareamento de Bases/genética , Sítios de Ligação , Sequência Conservada , Hibridização in Situ Fluorescente , Proteína da Região Y Determinante do Sexo/genética
2.
J Med Genet ; 52(4): 240-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25604083

RESUMO

BACKGROUND: SOX9 mutations cause the skeletal malformation syndrome campomelic dysplasia in combination with XY sex reversal. Studies in mice indicate that SOX9 acts as a testis-inducing transcription factor downstream of SRY, triggering Sertoli cell and testis differentiation. An SRY-dependent testis-specific enhancer for Sox9 has been identified only in mice. A previous study has implicated copy number variations (CNVs) of a 78 kb region 517-595 kb upstream of SOX9 in the aetiology of both 46,XY and 46,XX disorders of sex development (DSD). We wanted to better define this region for both disorders. RESULTS: By CNV analysis, we identified SOX9 upstream duplications in three cases of SRY-negative 46,XX DSD, which together with previously reported duplications define a 68 kb region, 516-584 kb upstream of SOX9, designated XXSR (XX sex reversal region). More importantly, we identified heterozygous deletions in four families with SRY-positive 46,XY DSD without skeletal phenotype, which define a 32.5 kb interval 607.1-639.6 kb upstream of SOX9, designated XY sex reversal region (XYSR). To localise the suspected testis-specific enhancer, XYSR subfragments were tested in cell transfection and transgenic experiments. While transgenic experiments remained inconclusive, a 1.9 kb SRY-responsive subfragment drove expression specifically in Sertoli-like cells. CONCLUSIONS: Our results indicate that isolated 46,XY and 46,XX DSD can be assigned to two separate regulatory regions, XYSR and XXSR, far upstream of SOX9. The 1.9 kb SRY-responsive subfragment from the XYSR might constitute the core of the Sertoli-cell enhancer of human SOX9, representing the so far missing link in the genetic cascade of male sex determination.


Assuntos
Variações do Número de Cópias de DNA , Transtornos do Desenvolvimento Sexual/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOX9/genética , Animais , Linhagem Celular , Estudos de Coortes , Feminino , Humanos , Masculino , Camundongos , Linhagem
3.
Eur J Hum Genet ; 23(8): 1025-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25351776

RESUMO

Duplications in the ~2 Mb desert region upstream of SOX9 at 17q24.3 may result in familial 46,XX disorders of sex development (DSD) without any effects on the XY background. A balanced translocation with its breakpoint falling within the same region has also been described in one XX DSD subject. We analyzed, by conventional and molecular cytogenetics, 19 novel SRY-negative unrelated 46,XX subjects both familial and sporadic, with isolated DSD. One of them had a de novo reciprocal t(11;17) translocation. Two cases carried partially overlapping 17q24.3 duplications ~500 kb upstream of SOX9, both inherited from their normal fathers. Breakpoints cloning showed that both duplications were in tandem, whereas the 17q in the reciprocal translocation was broken at ~800 kb upstream of SOX9, which is not only close to a previously described 46,XX DSD translocation, but also to translocations without any effects on the gonadal development. A further XX male, ascertained because of intellectual disability, carried a de novo cryptic duplication at Xq27.1, involving SOX3. CNVs involving SOX3 or its flanking regions have been reported in four XX DSD subjects. Collectively in our cohort of 19 novel cases of SRY-negative 46,XX DSD, the duplications upstream of SOX9 account for ~10.5% of the cases, and are responsible for the disease phenotype, even when inherited from a normal father. Translocations interrupting this region may also affect the gonadal development, possibly depending on the chromatin context of the recipient chromosome. SOX3 duplications may substitute SRY in some XX subjects.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOXB1/genética , Testículo/crescimento & desenvolvimento , Transtornos 46, XX do Desenvolvimento Sexual/fisiopatologia , Adulto , Pontos de Quebra do Cromossomo , Cromossomos Humanos Par 17/genética , Cromossomos Humanos X/genética , Feminino , Humanos , Recém-Nascido , Masculino , Testículo/patologia , Translocação Genética/genética
4.
PLoS One ; 9(7): e101244, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25010117

RESUMO

Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Duplicação Gênica , Genes sry/genética , Fatores de Transcrição SOX9/genética , Animais , Cães , Feminino , Masculino , Testículo/crescimento & desenvolvimento , Testículo/metabolismo
5.
Hum Mol Genet ; 23(4): 1073-83, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24135036

RESUMO

In-frame missense and splicing mutations (resulting in a 2 amino acid insertion or a 34 amino acid deletion) dispersed through the MAP3K1 gene tilt the balance from the male to female sex-determining pathway, resulting in 46,XY disorder of sex development. These MAP3K1 mutations mediate this balance by enhancing WNT/ß-catenin/FOXL2 expression and ß-catenin activity and by reducing SOX9/FGF9/FGFR2/SRY expression. These effects are mediated at multiple levels involving MAP3K1 interaction with protein co-factors and phosphorylation of downstream targets. In transformed B-lymphoblastoid cell lines and NT2/D1 cells transfected with wild-type or mutant MAP3K1 cDNAs under control of the constitutive CMV promoter, these mutations increased binding of RHOA, MAP3K4, FRAT1 and AXIN1 and increased phosphorylation of p38 and ERK1/2. Overexpressing RHOA or reducing expression of MAP3K4 in NT2/D1 cells produced phenocopies of the MAP3K1 mutations. Using siRNA knockdown of RHOA or overexpressing MAP3K4 in NT2/D1 cells produced anti-phenocopies. Interestingly, the effects of the MAP3K1 mutations were rescued by co-transfection with wild-type MAP3K4. Although MAP3K1 is not usually required for testis determination, mutations in this gene can disrupt normal development through the gains of function demonstrated in this study.


Assuntos
Fator 9 de Crescimento de Fibroblastos/metabolismo , MAP Quinase Quinase Quinase 1/genética , Fatores de Transcrição SOX9/metabolismo , Via de Sinalização Wnt , Sequência de Bases , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Regulação da Expressão Gênica , Humanos , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , Mutação de Sentido Incorreto , Processos de Determinação Sexual
6.
Mol Syndromol ; 4(3): 119-24, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23653583

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia. Mutations in either ENG or ACVRL1 account for around 85% of cases, and 10% are large deletions and duplications. Here we present a large novel deletion in ACVRL1 gene and its molecular characterization in a 3 generation Italian family. We employed short tandem repeats (STRs) analysis, direct sequencing, multiplex ligation-dependant probe amplification (MLPA) analysis, and 'deletion-specific' PCR methods. STRs Analysis at ENG and ACVRL1 loci suggested a positive linkage for ACVRL1. Direct sequencing of this gene did not identify any mutations, while MLPA identified a large deletion. These results were confirmed and exactly characterized with a 'deletion-specific' PCR: the deletion size is 4,594 bp and breakpoints in exon 3 and intron 8 show the presence of short direct repeats of 7 bp [GCCCCAC]. We hypothesize, as causative molecular mechanism, the replication slippage model. Understanding the fine mechanisms associated with genomic rearrangements may indicate the nonrandomness of these events, highlighting hot spots regions. The complete concordance among MLPA, STRs analysis and 'deletion-specific PCR' supports the usefulness of MLPA in HHT molecular analysis.

8.
Br J Haematol ; 147(5): 706-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19775298

RESUMO

We report the case of a child with clinical and haematological features indicative of juvenile myelomonocytic leukaemia (JMML). The patient showed dysmorphic features: high forehead, bilateral epicanthal folds, long eyebrows, low nasal bridge and slightly low-set ears. A 38G>A (G13D) mutation in exon 1 of the NRAS gene was first demonstrated on peripheral blood cells, and then confirmed on granulocyte-macrophage colony-forming units. The same mutation was also found in buccal swab, hair bulbs, endothelial cells, skin fibroblasts. This case suggests for the first time that constitutional mutations of NRAS may be responsible for development of a myeloproliferative/myelodysplastic disorder in children.


Assuntos
Genes ras/genética , Mutação em Linhagem Germinativa , Leucemia Mielomonocítica Juvenil/genética , Células Cultivadas , Fácies , Fibroblastos/metabolismo , Predisposição Genética para Doença , Humanos , Lactente , Masculino
9.
BMC Dev Biol ; 8: 36, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18384673

RESUMO

BACKGROUND: Up to now, two loci have been involved in XX sex-reversal in mammals following loss-of-function mutations, PIS (Polled Intersex Syndrome) in goats and R-spondin1 (RSPO1) in humans. Here, we analyze the possible interaction between these two factors during goat gonad development. Furthermore, since functional redundancy between different R-spondins may influence gonad development, we also studied the expression patterns of RSPO2, 3 and 4. RESULTS: Similarly to the mouse, RSPO1 shows a sex-dimorphic expression pattern during goat gonad development with higher levels in the ovaries. Interestingly, the PIS mutation does not seem to influence its level of expression. Moreover, using an RSPO1 specific antibody, the RSPO1 protein was localized in the cortical area of early differentiating ovaries (36 and 40 dpc). This cortical area contains the majority of germ cell that are surrounded by FOXL2 negative somatic cells. At latter stages (50 and 60 dpc) RSPO1 protein remains specifically localized on the germ cell membranes. Interestingly, a time-specific relocation of RSPO1 on the germ cell membrane was noticed, moving from a uniform distribution at 40 dpc to a punctuated staining before and during meiosis (50 and 60 dpc respectively). Interestingly, also RSPO2 and RSPO4 show a sex-dimorphic expression pattern with higher levels in the ovaries. Although RSPO4 was found to be faintly and belatedly expressed, the expression of RSPO2 increases at the crucial 36 dpc stage, as does that of FOXL2. Importantly, RSPO2 expression appears dramatically decreased in XX PIS-/- gonads at all three tested stages (36, 40 and 50 dpc). CONCLUSION: During goat ovarian development, the pattern of expression of RSPO1 is in agreement with its possible anti-testis function but is not influenced by the PIS mutation. Moreover, our data suggest that RSPO1 may be associated with germ cell development and meiosis. Interestingly, another RSPO gene, RSPO2 shows a sex-dimorphic pattern of expression that is dramatically influenced by the PIS mutation.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Cabras/genética , Ovário/embriologia , Diferenciação Sexual/genética , Trombospondinas/genética , Animais , DNA Complementar , Transtornos do Desenvolvimento Sexual , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Feminino , Cabras/embriologia , Cabras/fisiologia , Fases de Leitura Aberta , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Nat Genet ; 38(11): 1304-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17041600

RESUMO

R-spondins are a recently characterized small family of growth factors. Here we show that human R-spondin1 (RSPO1) is the gene disrupted in a recessive syndrome characterized by XX sex reversal, palmoplantar hyperkeratosis and predisposition to squamous cell carcinoma of the skin. Our data show, for the first time, that disruption of a single gene can lead to complete female-to-male sex reversal in the absence of the testis-determining gene, SRY.


Assuntos
Diferenciação Celular/genética , Predisposição Genética para Doença , Processos de Determinação Sexual , Neoplasias Cutâneas/genética , Pele/citologia , Trombospondinas/genética , Trombospondinas/fisiologia , Animais , Carcinoma de Células Escamosas/genética , Células Cultivadas , Aberrações Cromossômicas , Análise Mutacional de DNA , Transtornos do Desenvolvimento Sexual , Feminino , Humanos , Ceratodermia Palmar e Plantar/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mutação , Linhagem , Pele/embriologia
11.
Curr Opin Genet Dev ; 16(3): 289-92, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16647843

RESUMO

Sex determination in mammals is based on a genetic cascade that controls the fate of the gonads. Gonads will then direct the establishment of phenotypic sex through the production of hormones. Different types of sex reversal are expected to occur if mutations disrupt one of the three steps of gonadal differentiation: formation of the gonadal primordia, sex determination, and testis or ovary development.


Assuntos
Transtornos do Desenvolvimento Sexual , Processos de Determinação Sexual , Animais , Diferenciação Celular , Gônadas/citologia , Gônadas/embriologia , Gônadas/metabolismo , Humanos , Cromossomos Sexuais/genética
12.
J Am Acad Dermatol ; 53(5 Suppl 1): S234-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16227098

RESUMO

The association of palmoplantar keratoderma (PPK) with the development of cutaneous squamous cell carcinomas (SCCs), dental anomalies, severe hypogenitalism with hypospadias, abnormal development of gonads with ambiguous external genitalia, gynecomastia, altered plasma sex hormones levels, and hypertriglyceridemia has not, to our knowledge, been reported previously. We describe it in 4 brothers with 46,XX karyotype, whereas the 5 sisters of their consanguineous parents were unaffected. This family may represent a new syndrome. The PPK was of the classical nonepidermolytic histologic type. The proband also had a laryngeal carcinoma diagnosed in his early forties and nodular testicular hyperplasia of Leydig cells.


Assuntos
Carcinoma de Células Escamosas/genética , Hipogonadismo/genética , Ceratodermia Palmar e Plantar/genética , Transtornos dos Cromossomos Sexuais/genética , Neoplasias Cutâneas/genética , Consanguinidade , Dislipidemias/genética , Ligação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Doenças Periodontais/genética , Síndrome , Testículo/anormalidades
13.
Am J Med Genet A ; 138A(3): 241-6, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16158431

RESUMO

We describe a large inbred Sicilian family that includes four 46, XX (SRY-) brothers. Palmoplantar hyperkeratosis (PPK) and an associated predisposition to squamous cell carcinoma (SCC) of the skin, segregates as a recessive trait within the family. Interestingly, all the PPK-affected members of the family are phenotypic males (46,XY or 46,XX) while seven XX sibs are healthy phenotypic females with no signs of PPK. We propose that homozygosity for a single mutational event, possibly including contiguous genes, may cause PPK/SCC in both XY or XX individuals and sex reversal in XX individuals. The family is informative for linkage analysis for the PPK trait and allows linkage exclusion for the sex reversal trait. Here we show that 15 loci involved in PPK etiology, skin differentiation, function or malignancy, and nine loci involved in sex determination/differentiation are not implicated in the phenotype of this family.


Assuntos
Carcinoma de Células Escamosas/genética , Predisposição Genética para Doença , Ceratodermia Palmar e Plantar/genética , Processos de Determinação Sexual , Neoplasias Cutâneas/genética , Feminino , Genes Recessivos , Humanos , Escore Lod , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...