Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 9(17): 18984-18994, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708270

RESUMO

Nano- and microplastic particles are a global and emerging environmental issue that might pose potential threats to human health. The present work exploits artificial intelligence (AI) to identify nano- and microplastics in water by monitoring the interaction of the sample with a sensitive surface. An estrogen receptor (ER) grafted onto a gold surface, realized on a nonexpensive and easy-to-produce plastic optical fiber (POF) platform in order to excite a surface plasmon resonance (SPR) phenomenon, has been developed in order to carry out a "smart" sensitive interface (ER-SPR-POF interface). The ER-SPR-POF interface offers output data useful for exploiting a machine learning-based approach to achieve nano- and microplastic particle sensors. This work developed a proof-of-concept sensor through a training phase carried out by different particles, in terms of materials and size. The experimental results have demonstrated that the proposed "smart" ER-SPR-POF interface combined with AI can be used to identify the kind of particles in terms of the materials (polystyrene; poly(methyl methacrylate)) and size (20 µm; 100 nm) with an accuracy of 90.3%.

2.
J Phys Chem Lett ; 14(25): 5914-5923, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37343210

RESUMO

The outbreak of viral infectious diseases urges airborne droplet and surface disinfection strategies, which may rely on photocatalytic semiconductors. A lipid bilayer membrane generally encloses coronaviruses and promotes the anchoring on the semiconductor surface, where, upon photon absorption, electron-hole pairs are produced, which can react with adsorbed oxygen-containing species and lead to the formation of reactive oxygen species (ROSs). The photogenerated ROSs may support the disruptive oxidation of the lipidic membrane and pathogen death. Density functional theory calculations are employed to investigate adsorption modes, energetics, and electronic structure of a reference phospholipid on anatase TiO2 nanoparticles. The phospholipid covalently bound on TiO2, engaging a stronger adsorption on the (101) than on the (001) surface. The energetically most stable structure involves the formation of four covalent bonds through phosphate and carbonyl oxygen atoms. The adsorbates show a reduction of the band gap compared with standalone TiO2, suggesting a significant interfacial coupling.


Assuntos
Coronavirus , Fosfolipídeos , Propriedades de Superfície , Titânio/química , Oxigênio
3.
Phys Chem Chem Phys ; 25(5): 4132-4140, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36655359

RESUMO

Solar cell absorbing layers made of metal-halide perovskites (MHPs) are usually deposited from solution phase precursors, which is one of the reasons why these materials received huge research attention in the last few years. A detailed knowledge of the solution chemistry is critical to understand the formation of MHP thin films and thus to control their optoelectronic properties and the reproducibility issues that usually affect their synthesis. In this regard, the concentration of triiodide, I3-, is one factor known to have an influence on regulating important aspects such as the particle size in the solution and the defect concentration in the film. In this study, we highlight an underestimated source of I3-, namely the iodide salt solutions ubiquitously employed in MHP synthetic routes, which not only lead to the formation of I3- but also detracts available I- for the MHP synthesis, thus establishing under-stoichiometric conditions. Particularly, we show how the oxidation of I- to I3- changes in time with both the iodide salt counter-cation (K+, CH3NH3+) and the used solvent, meaning that variable quantities of I3- are found depending on the synthesis conditions, with enhanced oxidation found in the γ-butyrolactone (GBL) solvent. Though these differences are generally small, we shed light on a hidden and ever-present reaction which is likely to be related to the overall processing quality of MHP thin films.

4.
Nature ; 591(7848): 72-77, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658694

RESUMO

Lead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity1,2. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent-approaching those of commercial organic light-emitting diodes-have been demonstrated in both the infrared and the green emission channels1,3,4. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized5,6. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show that a key function of the ligand treatment is to 'clean' the nanocrystal surface through the removal of lead atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications-such as photovoltaics-for which bandgap stability is required.

5.
J Phys Chem C Nanomater Interfaces ; 125(49): 27344-27353, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35116086

RESUMO

The synthesis and characterization of a family of indene-C60 adducts obtained via Diels-Alder cycloaddition [4 + 2] are reported. The new C60 derivatives include indenes with a variety of functional groups. These adducts show lowest unoccupied molecular orbital energy levels to be at the right position to consider these compounds as electron-transporting materials for planar heterojunction perovskite solar cells. Selected derivatives were applied into inverted (p-i-n configuration) perovskite device architectures, fabricated on flexible polymer substrates, with large active areas (1 cm2). The highest power conversion efficiency, reaching 13.61%, was obtained for the 6'-acetamido-1',4'-dihydro-naphtho[2',3':1,2][5,6]fullerene-C60 (NHAc-ICMA). Spectroscopic characterization was applied to visualize possible passivation effects of the perovskite's surface induced by these adducts.

6.
J Phys Chem B ; 124(50): 11481-11490, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33275849

RESUMO

Water is generally considered an enemy of metal halide perovskites, being responsible for their rapid degradation and, consequently, undermining the long-term stability of perovskite-based solar cells. However, beneficial effects of liquid water have been surprisingly observed, and synthetic routes including water treatments have shown to improve the quality of perovskite films. This suggests that the interactions of water with perovskites and their precursors are far from being completely understood, as water appears to play a puzzling dual role in perovskite precursor solutions. In this context, studying the basic interactions between perovskite precursors in the aqueous environment can provide a deeper comprehension of this conundrum. In this context, it is fundamental to understand how water impacts the chemistry of iodoplumbate perovskite precursor species, PbIx2-x. Here, we investigate the chemistry of these complexes using a combined experimental and theoretical strategy to unveil their peculiar structural and optical properties and eventually to assign the species present in the solution. Our study indicates that iodide-rich iodoplumbates, which are generally key to the formation of lead halide perovskites, are not easily formed in aqueous solutions because of the competition between iodide and solvent molecules in coordinating Pb2+ ions, explaining the difficulty of depositing lead iodide perovskites from aqueous solutions. We postulate that the beneficial effect of water when used as an additive is then motivated by its behavior being similar to high coordinative polar aprotic solvents usually employed as additives in one-step perovskite depositions.

7.
J Phys Chem Lett ; 11(15): 6139-6145, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32645264

RESUMO

We employ a fine-tuned theoretical framework, combining ab initio molecular dynamics (AIMD), density functional theory (DFT), and time-dependent (TD) DFT methods, to investigate the interactions and optical properties of the iodoplumbates within the low coordinative γ-butyrolactone (GBL) solvent environment, widely employed in the perovskite synthesis. We uncover the extent of GBL coordination to PbI2 investigating its relation to the solvated PbI2 optical properties. The employed approach has been further validated by comparison with the experimental UV-vis absorption spectrum of PbI2 in GBL solvent. A comparison with other solvents, commonly employed in the perovskite synthesis, such as N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) is also reported. The methodology developed in this work can be reasonably extended to the investigation of similar systems.

8.
Chem Commun (Camb) ; 53(46): 6211-6214, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28534893

RESUMO

We report on the exploitation of a new tetrazole-substituted 1,10-phenanthroline and a 2,2'-bipyridine (bpy) ancillary ligand modified with an electron-donating group in cationic ruthenium complexes. This complex, placed in between two electrodes without any polymer, demonstrates high efficiency near-infrared (NIR) electroluminescence (EL). The comparison between bpy and its methyl-substituted ancillary ligand shows that the cationic Ru tetrazolate complex containing methyl groups exhibits a red shift in the EL wavelength from 620 to 800 nm compared to [Ru(bpy)3]2+ and an almost twofold reduction in the turn-on voltage, i.e., from 5 to 3 V, with respect to 5-tetrazole-1,10-phenanthroline. An external quantum efficiency of 0.95% for the dimethyl derivative is demonstrated, which is a remarkable result for non-doped NIR light electrochemical cells based on ruthenium polypyridyl.

9.
Nano Lett ; 17(3): 1924-1930, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28196323

RESUMO

We have developed a colloidal synthesis of nearly monodisperse nanocrystals of pure Cs4PbX6 (X = Cl, Br, I) and their mixed halide compositions with sizes ranging from 9 to 37 nm. The optical absorption spectra of these nanocrystals display a sharp, high energy peak due to transitions between states localized in individual PbX64- octahedra. These spectral features are insensitive to the size of the particles and in agreement with the features of the corresponding bulk materials. Samples with mixed halide composition exhibit absorption bands that are intermediate in spectral position between those of the pure halide compounds. Furthermore, the absorption bands of intermediate compositions broaden due to the different possible combinations of halide coordination around the Pb2+ ions. Both observations are supportive of the fact that the [PbX6]4- octahedra are electronically decoupled in these systems. Because of the large band gap of Cs4PbX6 (>3.2 eV), no excitonic emission in the visible range was observed. The Cs4PbBr6 nanocrystals can be converted into green fluorescent CsPbBr3 nanocrystals by their reaction with an excess of PbBr2 with preservation of size and size distributions. The insertion of PbX2 into Cs4PbX6 provides a means of accessing CsPbX3 nanocrystals in a wide variety of sizes, shapes, and compositions, an important aspect for the development of precisely tuned perovskite nanocrystal inks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...