Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
3.
Front Plant Sci ; 12: 767459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899788

RESUMO

The Asteraceae family is the largest and most diversified family of the Angiosperms, characterized by the presence of numerous clustered inflorescences, which have the appearance of a single compound flower. It is estimated that this family represents around 10% of all flowered species, with a great biodiversity, covering all environments on the planet, except Antarctica. Also, it includes economically important crops, such as lettuce, sunflower, and chrysanthemum; wild flowers; herbs, and several species that produce molecules with pharmacological properties. Nevertheless, the biotechnological improvement of this family is limited to a few species and their genetic transformation was achieved later than in other plant families. Lettuce (Lactuca sativa L.) is a model species in molecular biology and plant biotechnology that has easily adapted to tissue culture, with efficient shoot regeneration from different tissues, organs, cells, and protoplasts. Due to this plasticity, it was possible to obtain transgenic plants tolerant to biotic or abiotic stresses as well as for the production of commercially interesting molecules (molecular farming). These advances, together with the complete sequencing of lettuce genome allowed the rapid adoption of gene editing using the CRISPR system. On the other hand, sunflower (Helianthus annuus L.) is a species that for years was considered recalcitrant to in vitro culture. Although this difficulty was overcome and some publications were made on sunflower genetic transformation, until now there is no transgenic variety commercialized or authorized for cultivation. In this article, we review similarities (such as avoiding the utilization of the CaMV35S promoter in transformation vectors) and differences (such as transformation efficiency) in the state of the art of genetic transformation techniques performed in these two species.

4.
BMC Genomics ; 22(1): 893, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906091

RESUMO

BACKGROUND: Leaf senescence delay impacts positively in grain yield by maintaining the photosynthetic area during the reproductive stage and during grain filling. Therefore a comprehensive understanding of the gene families associated with leaf senescence is essential. NAC transcription factors (TF) form a large plant-specific gene family involved in regulating development, senescence, and responses to biotic and abiotic stresses. The main goal of this work was to identify sunflower NAC TF (HaNAC) and their association with senescence, studying their orthologous to understand possible functional relationships between genes of different species. RESULTS: To clarify the orthologous relationships, we used an in-depth comparative study of four divergent taxa, in dicots and monocots, with completely sequenced genomes (Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa). These orthologous groups provide a curated resource for large scale protein sequence annotation of NAC TF. From the 151 HaNAC genes detected in the latest version of the sunflower genome, 50 genes were associated with senescence traits. These genes showed significant differential expression in two contrasting lines according to an RNAseq assay. An assessment of overexpressing the Arabidopsis line for HaNAC001 (a gene of the same orthologous group of Arabidopsis thaliana ORE1) revealed that this line displayed a significantly higher number of senescent leaves and a pronounced change in development rate. CONCLUSIONS: This finding suggests HaNAC001 as an interesting candidate to explore the molecular regulation of senescence in sunflower.


Assuntos
Helianthus , Proteínas de Plantas , Senescência Vegetal , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Helianthus/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Senescência Vegetal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Biotechnol ; 283: 62-69, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30016741

RESUMO

Snakin-1 is a cysteine-rich antimicrobial peptide (AMP) isolated from potato tubers, with broad-spectrum activity. It belongs to the Snakin/GASA family, whose members have been studied because of their diverse roles in important plant processes, including defense. To analyze if this defensive function may lead to disease tolerance in lettuce, one of the most worldwide consumed leafy vegetable, we characterized three homozygous transgenic lines overexpressing Snakin-1. They were biologically assessed by the inoculation with the fungal pathogens Rhizoctonia solani and Sclerotinia sclerotiorum both in vitro and in planta at the greenhouse. When in vitro assays were performed with R. solani on Petri dishes containing crude plant extracts it was confirmed that the expressed Snakin-1 protein has antimicrobial activity. Furthermore, transgenic lines showed a better response than wild type in in vivo challenges against R. solani both in chamber and in greenhouse. In addition, two of these lines showed significant in vivo protection against the pathogen S. sclerotiorum in challenge assays on adult plants. Our results show that Snakin-1 is an interesting candidate gene for the selection/breeding of lettuce plants with increased fungal tolerance.


Assuntos
Lactuca/genética , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ascomicetos/patogenicidade , Resistência à Doença , Lactuca/crescimento & desenvolvimento , Lactuca/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Rhizoctonia/patogenicidade
6.
Electron. j. biotechnol ; 31: 1-9, Jan. 2018. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1022023

RESUMO

Background: Lettuce is a globally important leafy vegetable and a model plant for biotechnology due to its adaptability to tissue culture and stable genetic transformation. Lettuce is also crucial for functional genomics research in the Asteraceae which includes species of great agronomical importance. The development of transgenic events implies the production of a large number of shoots that must be differentiated between transgenic and non-transgenic through the activity of the selective agent, being kanamycin the most popular. Results: In this work we adjusted the selection conditions of transgenic seedlings to avoid any escapes, finding that threshold concentration of kanamycin was 75 mg/L. To monitor the selection system, we studied the morphological response of transgenic and non-transgenic seedlings in presence of kanamycin to look for a visual morphological marker. Several traits like shoot length, primary root length, number of leaves, fresh weight, and appearance of the aerial part and development of lateral roots were affected in non-transgenic seedlings after 30 d of culture in selective media. However, only lateral root development showed an early, qualitative and reliable association with nptII presence, as corroborated by PCR detection. Applied in successive transgenic progenies, this method of selection combined with morphological follow-up allowed selecting the homozygous presence of nptII gene in 100% of the analyzed plants from T2 to T5. Conclusions: This protocol allows a simplified scaling-up of the production of multiple homozygous transgenic progeny lines in the early generations avoiding expensive and time-consuming molecular assays.


Assuntos
Plantas Geneticamente Modificadas/genética , Lactuca/genética , Seleção Genética , Canamicina/análise , Reação em Cadeia da Polimerase , Lactuca/química , Plântula , Homozigoto
7.
Methods Mol Biol ; 1224: 47-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25416248

RESUMO

Sunflower (Helianthus annuus L.) is still considered as a recalcitrant species to in vitro culture and transformation in spite of the publication of different protocols. Here we describe a routine transformation system of this crop which requires mature HA89 genotype seeds and Agrobacterium tumefaciens EHA105 strain for gene delivery, being both easily available. Selection of transformed shoots depends on root development in kanamycin-selective media, instead of shoot color, avoiding selection of escapes. The establishment of this protocol proved successful for the incorporation of both reporter and agronomic important genes and also for the evaluation of the specific expression patterns of different promoters in transgenic sunflower plants. Stable expression of the incorporated transgenes was confirmed by RT-PCR and GUS reporter gene visualization. Stable inheritance of transgenes was successfully followed until T2 generation in several independent lines.


Assuntos
Engenharia Genética/métodos , Helianthus/crescimento & desenvolvimento , Helianthus/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Técnicas de Cocultura , Desinfecção , Flores/crescimento & desenvolvimento , Técnicas de Transferência de Genes , Helianthus/fisiologia , Plantas Geneticamente Modificadas , Regeneração , Sementes/crescimento & desenvolvimento , Solo , Transformação Genética
8.
Electron. j. biotechnol ; 9(3)June 2006. ilus, tab
Artigo em Inglês | LILACS | ID: lil-448826

RESUMO

Despite of numerous publications in sunflower genetic transformation, there is no efficient or reproducible protocol with low number of escapes. The latter would indicate that the selection method is not effective. In this work we used Km as selective agent, Agrobacterium tumefaciens EHA105 strain and a vector with the nptII gene under the nos promoter and uidA gene under 35S promoter. The response of agroinfected (A) and control (C) explants during the in vitro culture was studied and in both cases in presence or absence of Km in order to assign a differential morphologic response between transformed and non-transformed plants. The characteristics analyzed were: height, colour/aspect of the plantlets, in vitro rooting and in vitro bud-flower development. Selection was applied from the third regeneration media. Among the A plantlets two were capable of rooting, being positive by PCR, whereas the C were unable to root in presence of Km. One of them gave 6 seeds and in these plants, it was determined the presence of the transgene by PCR and GUS staining. This work shows that in Km selection, colour/aspect of shoots is not useful as selection criteria whereas rooting is an effective selection method in which no escapes were obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA