Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38672073

RESUMO

Aging is closely related to the main aspects of multiple sclerosis (MS). The average age of the MS population is increasing and the number of elderly MS patients is expected to increase. In addition to neurons, N-methyl-D-aspartate receptors (NMDARs) are also expressed on non-neuronal cells, such as immune cells. The aim of this study was to investigate the role of NMDARs in experimental autoimmune encephalomyelitis (EAE) in young and aged rats. Memantine, a non-competitive NMDAR antagonist, was administered to young and aged Dark Agouti rats from day 7 after immunization. Antagonizing NMDARs had a more favourable effect on clinical disease, reactivation, and apoptosis of CD4+ T cells in the target organ of aged EAE rats. The expression of the fractalkine receptor CX3CR1 was increased in memantine-treated rats, but to a greater extent in aged rats. Additionally, memantine increased Nrf2 and Nrf2-regulated enzymes' mRNA expression in brain tissue. The concentrations of superoxide anion radicals, malondialdehyde, and advanced oxidation protein products in brain tissue were consistent with previous results. Overall, our results suggest that NMDARs play a more important role in the pathogenesis of EAE in aged than in young rats.

2.
Curr Med Chem ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303535

RESUMO

Arterial hypertension (AH) is recognized as the most common illness within the group of cardiovascular diseases and the most massive chronic non-infectious disease in the world. The number of hypertensive patients worldwide has reached 1.28 billion, contributing to an increase in cardiovascular diseases and premature death globally. The high prevalence of hypertension emphasizes the importance of effectively treating this condition. Elevated blood pressure often leads to lethal complications (heart failure, stroke, renal disorders, etc.) if left untreated. Considering an increase in AH prevalence in the future, a successful therapeutical approach to this disease and its complications is essential. The goal of AH treatment is to maintain normotensive blood pressure through various approaches, including lifestyle changes, a well-balanced diet, increased physical activity, psychoeducation, and, when necessary, pharmacotherapy. The evolving pharmacotherapeutic landscape reflects the progress made in our understanding of hypertension and emphasizes the need for continuous innovation to meet the challenges posed by this prevalent global health concern. The journey toward more effective and tailored treatments for hypertension is ongoing, and the introduction of new medications plays a pivotal role in shaping the future of antihypertensive pharmacotherapy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38192128

RESUMO

Epilepsy is a chronic neurological condition characterized by unprovoked, recurrent seizures. There are several types of epilepsy, and the cause of the condition can vary. Some cases of epilepsy have a genetic component, while others may be caused by brain injuries, infections, or other underlying conditions. Treatment for epilepsy typically involves anti-seizure medications (ASMs), although different approaches, such as surgery or a special diet, may be considered in specific cases. The treatment aims to effectively manage and potentially eliminate seizures while minimizing any accompanying side effects. Many different ASMs are available, and the choice of medication depends on several factors, including the type of seizures, the patient's age, general health, and potential drug interactions. For the treatment of epilepsy, there have been significant advancements in recent decades, which have led to the approval of many different ASMs. Newer ASMs offer a broader range of mechanisms of action, improved tolerability profiles, and reduced drug interactions compared to older drugs. This review aims to discuss the pharmacological characteristics, clinical applications, effectiveness, and safety of ASMs, with a particular emphasis on various age groups, especially children. Moreover, this review seeks to provide a comprehensive understanding of ASM therapy for epilepsy management, assisting physicians in selecting suitable ASMs for their patients.

4.
Brain Sci ; 13(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137155

RESUMO

Zaleplon is a positive allosteric modulator of the γ-aminobutyric acid (GABA)A receptor approved for the short-term treatment of insomnia. Previous publications on zaleplon have not addressed the proteins involved in its mechanism of action but have mostly referred to behavioral or pharmacological studies. Since both GABAergic and glutamatergic signaling have been shown to regulate wakefulness and sleep, we examined the effects of prolonged zaleplon treatment (0.625 mg/kg for 5 days) on these systems in the hippocampus of male Wistar rats. Western blot and immunohistochemical analyses showed that the upregulated components of GABAergic signaling (glutamate decarboxylase, vesicular GABA transporter, GABA, and α1 subunit of the GABAA receptor) were accompanied by increased protein levels in the glutamatergic system (vesicular glutamate transporter 1 and NR1, NR2A, and NR2B subunits of N-methyl-d-aspartate receptor). Our results, showing that zaleplon enhances GABA neurotransmission in the hippocampus, were not surprising. However, we found that treatment also increased glutamatergic signaling. This could be the result of the downregulation of adenosine A1 receptors, important modulators of the glutamatergic system. Further studies are needed to investigate the effects of the zaleplon-induced increase in hippocampal glutamatergic neurotransmission and the possible involvement of the adenosine system in zaleplon's mechanism of action.

5.
Genes (Basel) ; 14(5)2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37239455

RESUMO

Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.


Assuntos
Ansiolíticos , Farmacogenética , Humanos , Ansiolíticos/uso terapêutico , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Antidepressivos/uso terapêutico , Antidepressivos/farmacocinética
6.
Mini Rev Med Chem ; 23(8): 941-952, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36121077

RESUMO

Dehydroepiandrosterone (DHEA) is the most abundant steroid hormone in primates, which is predominantly synthesized in the adrenal cortex. A characteristic curve of growth and decline of its synthesis during life was observed, together with the corresponding formation of its sulphate ester (DHEAS). High levels of plasma circulating DHEA are suggested as a marker of human longevity, and various pathophysiological conditions lead to a decreased DHEA level, including adrenal insufficiency, severe systemic diseases, acute stress, and anorexia. More recent studies have established the importance of DHEA in the central nervous system (CNS). A specific intranuclear receptor for DHEA has not yet been identified; however, highly specific membrane receptors have been detected in endothelial cells, the heart, kidney, liver, and the brain. Research shows that DHEA and DHEAS, as well as their metabolites, have a wide range of effects on numerous organs and organ systems, which places them in the group of potential pharmacological agents useful in various clinical entities. Their action as neurosteroids is especially interesting due to potential neuroprotective, pro-cognitive, anxiolytic, and antidepressant effects. Evidence from clinical studies supports the use of DHEA in hypoadrenal individuals and in treating depression and associated cognitive disorders. However, there is also an increasing trend of recreational DHEA misuse in healthy people, as it is classified as a dietary supplement in some countries. This article aims to provide a critical review regarding the biological and pharmacological effects of DHEA, its mechanism of action, and potential therapeutic use, especially in CNS disorders.


Assuntos
Desidroepiandrosterona , Células Endoteliais , Animais , Humanos , Desidroepiandrosterona/farmacologia , Desidroepiandrosterona/uso terapêutico , Células Endoteliais/metabolismo , Sulfato de Desidroepiandrosterona/metabolismo , Sulfato de Desidroepiandrosterona/farmacologia , Encéfalo/metabolismo , Esteroides
7.
J Sci Food Agric ; 99(12): 5293-5302, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31006866

RESUMO

BACKGROUND: Growing challenges of resource depletion, food security and environmental protection are putting stress on the development of biorefinery processes for bioprocessing of residues from food and agro-industry into value-added products. In this study, the simultaneous production of lactic acid (LA) and livestock feed on a combined substrate based on molasses and potato stillage by Lactobacillus paracasei NRRL B-4564 immobilized onto sunflower seed hull (SSH), brewer's spent grain (BSG) and sugar beet pulp (SBP) was studied. RESULTS: The highest total LA concentration of 399 g L-1 with overall productivity of 1.27 g L-1  h-1 was achieved in repeated batch fermentation by SBP-immobilized biocatalyst, followed by BSG- and SSH-immobilized cells. Fermentation improved the content of proteins and ash, and decreased the content of fibers in all three support materials. In addition, the fermentation had favorable effect on in vitro dry matter digestibility and energy values of SSH and BSG. According to assessment of probiotic potential, L. paracasei demonstrated a favorable probiotic profile, exhibiting high resistance to simulated ruminant digestive tract and significant antioxidant and antimicrobial activity. CONCLUSIONS: The proposed strategy enables valorization of agro-industrial residues as value-added ruminant feed and simultaneous LA production. Following principles of circular economy, the developed process combines different raw materials and integrates them into a biorefinery process, improving the overall profitability and productivity. © 2019 Society of Chemical Industry.


Assuntos
Ração Animal/análise , Resíduos Industriais/análise , Ácido Láctico/metabolismo , Lacticaseibacillus paracasei/metabolismo , Probióticos/análise , Agricultura , Ração Animal/microbiologia , Animais , Fermentação , Lacticaseibacillus paracasei/crescimento & desenvolvimento , Melaço/análise , Melaço/microbiologia , Rúmen/metabolismo , Ruminantes , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia
8.
J Sci Food Agric ; 93(4): 811-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22887346

RESUMO

BACKGROUND: Bioethanol is mostly produced from starchy parts of the corn grain kernel leaving significant amounts of valuable by-products such as dried distillers' grains with solubles (DDGS) which can be used as a substitute for traditional feedstuff. The suitability of six maize hybrids from Serbia was investigated for bioethanol and DDGS production. The correlation between physical and chemical characteristics of the grain, bioethanol yield and quality of the corresponding DDGS was assessed. RESULTS: All hybrids had very different chemical composition and physical characteristics which could allow various applications. The highest bioethanol yield (94.5% of theoretical) and volumetric productivity (2.01 g l(-1) h(-1)) were obtained with hybrid ZP 434 and the lowest with ZP 611k. Regarding chemical composition, all DDGS samples manifested good properties as feed components. Their protein content was higher compared to the kernel. In addition, the samples showed high digestibility and high mineral content, especially of calcium and phosphorus. CONCLUSION: A hybrid ZP 434 was selected as the most promising bioethanol producer. This property is attributed to the highest level of soft endosperm which is more susceptible to starch-hydrolysing enzymes. A high yield potential per hectare makes it the best candidate for commercial bioethanol production.


Assuntos
Ração Animal/análise , Biocombustíveis , Etanol/metabolismo , Hibridização Genética , Sementes/metabolismo , Amido/genética , Zea mays/metabolismo , Animais , Cálcio da Dieta/análise , Proteínas Alimentares/análise , Digestão , Endosperma , Minerais/análise , Fósforo na Dieta/análise , Sérvia , Amido/metabolismo , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...