Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104749

RESUMO

MOTIVATION: Pathogenic copy-number variants (CNVs) can cause a heterogeneous spectrum of rare and severe disorders. However, most CNVs are benign and are part of natural variation in human genomes. CNV pathogenicity classification, genotype-phenotype analyses, and therapeutic target identification are challenging and time-consuming tasks that require the integration and analysis of information from multiple scattered sources by experts. RESULTS: Here, we introduce the CNV-ClinViewer, an open-source web application for clinical evaluation and visual exploration of CNVs. The application enables real-time interactive exploration of large CNV datasets in a user-friendly designed interface and facilitates semi-automated clinical CNV interpretation following the ACMG guidelines by integrating the ClassifCNV tool. In combination with clinical judgment, the application enables clinicians and researchers to formulate novel hypotheses and guide their decision-making process. Subsequently, the CNV-ClinViewer enhances for clinical investigators' patient care and for basic scientists' translational genomic research. AVAILABILITY AND IMPLEMENTATION: The web application is freely available at https://cnv-ClinViewer.broadinstitute.org and the open-source code can be found at https://github.com/LalResearchGroup/CNV-clinviewer.


Assuntos
Variações do Número de Cópias de DNA , Software , Humanos , Genômica , Fenótipo , Genoma Humano
2.
Clin Genet ; 103(2): 226-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36189577

RESUMO

NSD2 dimethylates histone H3 at lysine 36 (H3K36me2) and is located in the Wolf-Hirschhorn syndrome (WHS) critical region. Recent descriptions have delineated loss-of-function (LoF) variants in NSD2 with a distinct disorder. The oncogenic missense variant p.Glu1099Lys occurs somatically in leukemia and has a gain-of-function (GoF) effect. We describe two individuals carrying p.Glu1099Lys as heterozygous de novo germline variant identified by exome sequencing (ES) of blood DNA and subsequently confirmed in two ectodermal tissues. Clinically, these individuals are characterized by intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly. Public cell lines with NSD2 GoF variants had increased K36me2, DNA promoter methylation, and dysregulated RNA expression. NSD2 GoF caused by p.Glu1099Lys is associated with a novel phenotype different from WHS and Rauch-Steindl syndrome (RAUST).


Assuntos
Proteínas Repressoras , Síndrome de Wolf-Hirschhorn , Humanos , Proteínas Repressoras/genética , Mutação com Ganho de Função , Histonas/genética , Histonas/metabolismo , Síndrome de Wolf-Hirschhorn/genética , DNA
3.
Front Genet ; 14: 1297754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188501

RESUMO

Uniparental disomy (UPD) is the inheritance of both alleles of a chromosome from only one parent. So far, the detection of UPDs in sequencing data is not well established and a known gap in next-generation sequencing (NGS) diagnostics. By developing a new tool for UPD detection, we re-evaluated an eight-year-old individual presenting with scoliosis, muscle weakness and global developmental delay. Previous panel analysis identified a homozygous likely pathogenic loss-of-function variant in the PIEZO2-gene associated with arthrogryposis (OMIM # 617146). Interestingly, during a re-evaluation process, we identified a region of homozygosity (ROH) covering over 95% of chromosome 18. Segregation and microsatellite analysis within the family revealed that only the father is a heterozygous carrier of the variant in PIEZO2 and confirmed paternal uniparental isodisomy (iUPD) on chromosome 18 in the individual. Further methylation analysis indicated demethylation of the promotor region of PARD6G-AS1, which is described to be maternally imprinted and could possibly influence the individuals' phenotype. Our report describes the first complete iUPD on chromosome 18 and highlights that UPDs can be a cause for homozygous pathogenic variants, which reduces the risk of reoccurrence in case of a new pregnancy in comparison to an autosomal recessive inheritance trait significantly.

4.
Sci Rep ; 12(1): 13507, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931711

RESUMO

The 15q13.3 microdeletion has pleiotropic effects ranging from apparently healthy to severely affected individuals. The underlying basis of the variable phenotype remains elusive. We analyzed gene expression using blood from three individuals with 15q13.3 microdeletion and brain cortex tissue from ten mice Df[h15q13]/+. We assessed differentially expressed genes (DEGs), protein-protein interaction (PPI) functional modules, and gene expression in brain developmental stages. The deleted genes' haploinsufficiency was not transcriptionally compensated, suggesting a dosage effect may contribute to the pathomechanism. DEGs shared between tested individuals and a corresponding mouse model show a significant overlap including genes involved in monogenic neurodevelopmental disorders. Yet, network-wide dysregulatory effects suggest the phenotype is not caused by a single critical gene. A significant proportion of blood DEGs, silenced in adult brain, have maximum expression during the prenatal brain development. Based on DEGs and their PPI partners we identified altered functional modules related to developmental processes, including nervous system development. We show that the 15q13.3 microdeletion has a ubiquitous impact on the transcriptome pattern, especially dysregulation of genes involved in brain development. The high phenotypic variability seen in 15q13.3 microdeletion could stem from an increased vulnerability during brain development, instead of a specific pathomechanism.


Assuntos
Transtornos Cromossômicos , Transcriptoma , Animais , Encéfalo/metabolismo , Deleção Cromossômica , Transtornos Cromossômicos/metabolismo , Cromossomos Humanos Par 15/genética , Humanos , Deficiência Intelectual , Camundongos , Convulsões
5.
Eur J Hum Genet ; 30(1): 117-125, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34690354

RESUMO

This single-center study aims to determine the time, diagnostic procedure, and cost saving potential of early exome sequencing in a cohort of 111 individuals with genetically confirmed neurodevelopmental disorders. We retrospectively collected data regarding diagnostic time points and procedures from the individuals' medical histories and developed criteria for classifying diagnostic procedures in terms of requirement, followed by a cost allocation. All genetic variants were re-evaluated according to ACMG recommendations and considering the individuals' phenotype. Individuals who developed first symptoms of their underlying genetic disorder when Next Generation Sequencing (NGS) diagnostics were already available received a diagnosis significantly faster than individuals with first symptoms before this cutoff. The largest amount of potentially dispensable diagnostics was found in genetic, metabolic, and cranial magnetic resonance imaging examinations. Out of 407 performed genetic examinations, 296 (72.7%) were classified as potentially dispensable. The same applied to 36 (27.9%) of 129 cranial magnetic resonance imaging and 111 (31.8%) of 349 metabolic examinations. Dispensable genetic examinations accounted 302,947.07€ (90.2%) of the total 335,837.49€ in potentially savable costs in this cohort. The remaining 32,890.42€ (9.8%) are related to non-required metabolic and cranial magnetic resonance imaging diagnostics. On average, the total potentially savable costs in our study amount to €3,025.56 per individual. Cost savings by first tier exome sequencing lie primarily in genetic, metabolic, and cMRI testing in this German cohort, underscoring the utility of performing exome sequencing at the beginning of the diagnostic pathway and the potential for saving diagnostic costs and time.


Assuntos
Deficiências do Desenvolvimento/genética , Sequenciamento do Exoma/métodos , Testes Genéticos/métodos , Doenças Raras/genética , Espasmos Infantis/genética , Adolescente , Criança , Pré-Escolar , Custos e Análise de Custo , Deficiências do Desenvolvimento/patologia , Testes Genéticos/economia , Humanos , Lactente , Doenças Raras/diagnóstico , Espasmos Infantis/patologia , Sequenciamento do Exoma/economia , Adulto Jovem
6.
Eur J Hum Genet ; 30(1): 101-110, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697416

RESUMO

Biallelic PNKP variants cause heterogeneous disorders ranging from neurodevelopmental disorder with microcephaly/seizures to adult-onset Charcot-Marie-Tooth disease. To date, only postnatal descriptions exist. We present the first prenatal diagnosis of PNKP-related primary microcephaly. Pathological examination of a male fetus in the 18th gestational week revealed micrencephaly with extracerebral malformations and thus presumed syndromic microcephaly. A recessive disorder was suspected because of previous pregnancy termination for similar abnormalities. Prenatal trio-exome sequencing identified compound heterozygosity for the PNKP variants c.498G>A, p.[(=),0?] and c.302C>T, p.(Pro101Leu). Segregation confirmed both variants in the sister fetus. Through RNA analyses, we characterized exon 4 skipping affecting the PNKP forkhead-associated (FHA) and phosphatase domains (p.Leu67_Lys166del) as the predominant effect of the paternal c.498G>A variant. We retrospectively investigated two unrelated individuals diagnosed with biallelic PNKP-variants to compare prenatal/postnatal phenotypes. Both carry the splice donor variant c.1029+2T>C in trans with a variant in the FHA domain (c.311T>C, p.(Leu104Pro); c.151G>C, p.(Val51Leu)). RNA-seq showed complex splicing for c.1029+2T>C and c.151G>C. Structural modeling revealed significant clustering of missense variants in the FHA domain with variants generating structural damage. Our clinical description extends the PNKP-continuum to the prenatal stage. Investigating possible PNKP-variant effects using RNA and structural modeling, we highlight the mutational complexity and exemplify a PNKP-variant characterization framework.


Assuntos
Enzimas Reparadoras do DNA/genética , Microcefalia/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Adulto , Enzimas Reparadoras do DNA/química , Feminino , Feto/anormalidades , Humanos , Masculino , Microcefalia/diagnóstico , Mutação de Sentido Incorreto , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Diagnóstico Pré-Natal , Domínios Proteicos , Splicing de RNA
7.
Genes (Basel) ; 14(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36672771

RESUMO

The re-analysis of nondiagnostic exome sequencing (ES) has the potential to increase diagnostic yields in individuals with rare diseases, but its implementation in the daily routines of laboratories is limited due to restricted capacities. Here, we describe a systematic approach to re-analyse the ES data of a cohort consisting of 1040 diagnostic and nondiagnostic samples. We applied a strict filter cascade to reveal the most promising single-nucleotide variants (SNVs) of the whole cohort, which led to an average of 0.77 variants per individual that had to be manually evaluated. This variant set revealed seven novel diagnoses (0.8% of all nondiagnostic cases) and two secondary findings. Thirteen additional variants were identified by a scientific approach prior to this re-analysis and were also present in this variant set. This resulted in a total increase in the diagnostic yield of 2.3%. The filter cascade was optimised during the course of the study and finally resulted in sensitivity of 85%. After applying the filter cascade, our re-analysis took 20 h and enabled a workflow that can be used repeatedly. This work is intended to provide a practical recommendation for other laboratories wishing to introduce a resource-efficient re-analysis strategy into their clinical routine.


Assuntos
Exoma , Transtornos do Neurodesenvolvimento , Humanos , Exoma/genética , Sequenciamento do Exoma , Estudos de Coortes , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Doenças Raras
8.
Clin Genet ; 100(4): 412-429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216016

RESUMO

ZMYND11 is the critical gene in chromosome 10p15.3 microdeletion syndrome, a syndromic cause of intellectual disability. The phenotype of ZMYND11 variants has recently been extended to autism and seizures. We expand on the epilepsy phenotype of 20 individuals with pathogenic variants in ZMYND11. We obtained clinical descriptions of 16 new and nine published individuals, plus detailed case history of two children. New individuals were identified through GeneMatcher, ClinVar and the European Network for Therapies in Rare Epilepsy (NETRE). Genetic evaluation was performed using gene panels or exome sequencing; variants were classified using American College of Medical Genetics (ACMG) criteria. Individuals with ZMYND11 associated epilepsy fell into three groups: (i) atypical benign partial epilepsy or idiopathic focal epilepsy (n = 8); (ii) generalised epilepsies/infantile epileptic encephalopathy (n = 4); (iii) unclassified (n = 8). Seizure prognosis ranged from spontaneous remission to drug resistant. Neurodevelopmental deficits were invariable. Dysmorphic features were variable. Variants were distributed across the gene and mostly de novo with no precise genotype-phenotype correlation. ZMYND11 is one of a small group of chromatin reader genes associated in the pathogenesis of epilepsy, and specifically ABPE. More detailed epilepsy descriptions of larger cohorts and functional studies might reveal genotype-phenotype correlation. The epileptogenic mechanism may be linked to interaction with histone H3.3.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Epilepsia/diagnóstico , Epilepsia/genética , Variação Genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Pré-Escolar , Bases de Dados Factuais , Eletroencefalografia , Epilepsia/terapia , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
9.
Transcription ; 11(5): 217-229, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32663063

RESUMO

Transcription elongation is a highly regulated process affected by many proteins, RNAs and the underlying DNA. Here we show that the nascent RNA can interfere with transcription in human cells, extending our previous findings from bacteria and yeast. We identified a variety of Pol II-binding aptamers (RAPs), prominent in repeat elements such as ACRO1 satellites, LINE1 retrotransposons and CA simple repeats, and also in several protein-coding genes. ACRO1 repeat, when translated in silico, exhibits ~50% identity with the Pol II CTD sequence. Taken together with a recent proposal that proteins in general tend to interact with RNAs similar to their cognate mRNAs, this suggests a mechanism for RAP binding. Using a reporter construct, we show that ACRO1 potently inhibits Pol II elongation in cis. We propose a novel mode of transcriptional regulation in humans, in which the nascent RNA binds Pol II to silence its own expression.


Assuntos
Aptâmeros de Nucleotídeos/genética , RNA Polimerase II/genética , Transcrição Gênica/genética , Aptâmeros de Nucleotídeos/metabolismo , Sítios de Ligação/genética , Humanos , RNA Polimerase II/metabolismo
10.
Nucleic Acids Res ; 44(4): 1703-17, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26682798

RESUMO

The formation of RNA-DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability. nrl1Δ mutants exhibit endogenous DNA damage, are sensitive to exogenous DNA damage, and have defects in homologous recombination (HR) repair. Concomitantly, nrl1Δ cells display significant changes in gene expression, similar to those induced by DNA damage in wild-type cells. Further, we find that nrl1Δ cells accumulate high levels of R-loops, which co-localize with HR repair factors and require Rad51 and Rad52 for their formation. Together, our findings support a model in which R-loop accumulation and subsequent DNA damage sequesters HR factors, thereby compromising HR repair at endogenously or exogenously induced DNA damage sites, leading to genome instability.


Assuntos
Processamento Alternativo/genética , Instabilidade Genômica/genética , Recombinação Homóloga/genética , Precursores de RNA/genética , Proteínas de Schizosaccharomyces pombe/genética , DNA/química , DNA/genética , Reparo do DNA/genética , RNA/química , RNA/genética , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Schizosaccharomyces/genética , Spliceossomos/genética , Spliceossomos/metabolismo
11.
RNA Biol ; 10(2): 180-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23324605

RESUMO

The spliceosomal component U1snRNP commits pre-mRNAs to the splicing pathway. Recently, a nuclear RNA surveillance function has been ascribed to U1, namely the suppression of intronic polyadenylation sites. This surveillance holds regulatory potential as it alters the 3' ends of certain receptor tyrosine kinase mRNAs. However, suppression of 3' end processing by U1 snRNP is also the cause of a severe genetic disorder. We described a 3'UTR point mutation creating a 5'SS leading to U1-mediated suppression of 3' end formation. Thus, the inhibitory function of U1 is both beneficial and deleterious where misled. The exact mechanism of how U1 interferes with 3' end processing remains unclear. According to our data, U1 snRNP already interferes with cleavage or poly(A) site selection instead of directly inhibiting poly(A) polymerase as previously assumed. Here, we present alternative models for U1-mediated poly(A) site suppression and discuss the implications for RNA quality control and disease-related mutations.


Assuntos
Poli A/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Regiões 3' não Traduzidas , HIV/genética , HIV/metabolismo , Íntrons , Mutação Puntual , Poli A/genética , Poliadenilação , Clivagem do RNA , Sítios de Splice de RNA , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Viral/genética , Ribonucleoproteína Nuclear Pequena U1/genética , Spliceossomos/genética , Spliceossomos/metabolismo
12.
EMBO J ; 31(20): 4035-44, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22968171

RESUMO

Biallelic mutations in the untranslated regions (UTRs) of mRNAs are rare causes for monogenetic diseases whose mechanisms remain poorly understood. We investigated a 3'UTR mutation resulting in a complex immunodeficiency syndrome caused by decreased mRNA levels of p14/robld3 by a previously unknown mechanism. Here, we show that the mutation creates a functional 5' splice site (SS) and that its recognition by the spliceosomal component U1 snRNP causes p14 mRNA suppression in the absence of splicing. Histone processing signals are able to rescue p14 expression. Therefore, the mutation interferes only with canonical poly(A)-site 3' end processing. Our data suggest that U1 snRNP inhibits cleavage or poly(A) site recognition. This is the first description of a 3'UTR mutation that creates a functional 5'SS causative of a monogenetic disease. Moreover, our data endorse the recently described role of U1 snRNP in suppression of intronic poly(A) sites, which is here deleterious for p14 mRNA biogenesis.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Síndromes de Imunodeficiência/genética , Neutropenia/congênito , Poliadenilação/genética , Sítios de Splice de RNA/genética , RNA Nuclear Pequeno/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Sequência Conservada , Endossomos/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Histonas/fisiologia , Humanos , Íntrons/genética , Mamíferos/genética , Dados de Sequência Molecular , Morfolinos/farmacologia , Neutropenia/genética , Mutação Puntual , Poliadenilação/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , Estabilidade de RNA , RNA Mensageiro/biossíntese , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...